Anesthesia POCUS Pocket Reference

© S ()

By collaborators & with support from multiple institutions, including:

💁 Open Critical Care.....

Scan me

liews.

Cardiac ultrasound images courtesy of: http://sites.austincc.edu/sonography-resources/ Cardiac illustrations courtesy of Dr. Atif Qasim: echocardiographer.org Lung ultrasound images courtesy of: Picano et al. "Lung Ultrasound for the cardiologist", JACC Cardiovascular Imaging, Vol 11, No 11, 2018

Ecno Modalities		
2D	gross anatomy, ventricular and valvular movement, positioning for M-mode and doppler	
M-mode	2D movement along straight line, plotted over time. Used for chamber dimensions, timing of cardiac events	
PWD	PWD = pulsed wave doppler, measures velocity at set point Valvular flow velocities <2 m/s LV diastolic function Stroke volume and cardiac output	
CWD	CWD = continuous wave doppler, measures highest velocity along path Valvular flow velocities >2 m/s Velocity of flow in shunts	
Color	gross assessment of regurgitant flows and shunts	

Standard sequence for basic TTE assessment		
PLAX	standard, RV inflow, RV outflow	
PSAX	aortic valve, mitral valve, mid-papillary, apex	
Apical	4-chamber view, 5-chamber view	
Subcostal	4-chamber, IVC	

Disclaimer: This card is intended to be educational in nature and is not a substitute for clinical decision making based on the medical condition presented. It is intended to serve as an introduction to terminology. It is the responsibility of the user to ensure all information contained herein is current and accurate by using published references. This card is a collaborative effort by representatives of multiple academic medical centers.

Parasternal	lona	Axis (Basic
arasicmar	Long /	7713 (

Patient: slight left lateral, left arm above head, HOB @15° can help open intercostal spaces, consider end-expiratory breath hold Transducer: 2nd- 4th intercostal space left of sternum; notch toward right shoulder

a) Standard PLAX: center MV and AV leaflets in the middle of the screen, IVS and LVPW should be parallel to each other, should not see LV apex, RV is closest to the chest wall/probe

- b) RV inflow: from PLAX view, tilt transducer to aim toward patients right
- shoulder (look up), may see PA bifurcate

Parasterna	Long /	Axis (P	LAX	Advanced

ode	Left Ventricle: 2D: gross systolic function, LVOT diameter, LV septum th M-mode: LV and aortic root measurements, LA dimensions
	Valves: 2D: gross AV and MV leaflet anatomy and function
	RV inflow/outflow: 2D: gross appearance of RA, TV, RV, PV, PA. RVOT PA Aorta suggests pulm vascular pressure overload.
	Aona suggesis puint vascular pressure overtoau.

Parasternal Long Axis (PLAX) Expert Standard DLAV:

Standard PLAX: Color doppler: gross evaluation for AR, MR, VSD RV inflow/outflow: CWD across TV to estimate PASP (see A4C section) PWD across PV to estimate pulmonary VTI (see PSAX section)
Pericardial effusion: fluid between epicardium and desc. aorta that termi- nates at AV groove Pleural effusion: posterior to descending aorta (visible throughout cardiac cycle) EPSS: M-mode across distal tip of anterior mitral leaflet to measure distance from IVS during early diastole. EPSS >7mm suggests LVEF <50%

Anterior Leaflet

Posterior Leaflet

ickness

Parasternal Short Axis (PSAX) Basin Detients come co DLAV view

1	Patient: same as PLAX view Transducer: from PLAX, rotate transducer 90° cl pointing toward left shoulder
	Tilt (more than slide) probe from base to apex to (A) aortic/tricuspid/pulmonic valve level, (B) mitri (C) LV mid-papillary muscle level (should see co (D) apex view (not shown) Optimize view: exhalation (decrease overlying lu er toward pt's right shoulder
\sim	

Dopple

FR 55Hz

LVS <1.1cm

Anteroser

W/all

- 2.3 cm EPSS

E-Point Septal Separation (EPSS):

Parasternal Short Axis (PSAX) Advanced 2D Aortic valve level: 2D: AV cusps, RA, TV, RV, PV, RVOT, PA diameter lockwise until notch is M-mode Mitral valve level: 2D: MV, mobility, and commissural apparatus obtain short axis views of LV papillary muscle level: al valve level ('fish mouth'), 2D: LV wall thickness (<= 1.6/1.5 Male/Female), IVSd, RV mpletely around muscle), M-mode: LVEDD (<= 5.8/5.2 Male/Female), LVESD, IVSd ung volume), move transduc-Parasternal Short Axis (PSAX) Expert Doppler Color doppler: gross assessment for TR, PR, VSD PASP based on TR velocity: CWD across TV (see A4C section) Pulmonary velocity time integral (VTI): PWD proximal to PV (estimate of cardiac output) Coronary ischemia: regional wall motion abnormalities RV pressure overload: dilated PA and RV, IVS flattening, "D-shaped LV Volume status: "kissing" papillary muscles at end-systole suggests LV underfilling PFO: color mixing between RA and LA **Coronary Territories** Left anterior descending (LAD) Left circumflex artery (LCx) Posterior descending artery of right coronary artery, and LCx Parasterma long axis Parasternal short axis RV pressure overload RV Overload and Dilation Pericardial 'D-shaped' LV constraint AL/PMPM: anterolateral/posteromedial papillary MV: mitral valve IAS: interatrial septum muscle AML/PML: anterior/posterior mitral leaflet PA/PV: pulmonary artery/vein AV: aortic valve RV – right ventricle RVOT: right ventricular outflow tract DA : descending aorta

DVT: deep-vein thrombosis EPSS: end-point septal separation FAST: focused assessment with sonography for trauma LV - left ventricle LA: left atrium MAPSE: mitral annular plane systolic excursion

SVC/IVC: superior/inferior vena cava TAPSE: tricuspid annular plane systolic excursion TV: tricuspid valve VTI: velocity time integral

Apical Basic		
Position	Patient: left lateral decubitus, left arm up, gentle inspiratory hold Transducer: find the cardiac apex from PMI palpation (inferior to nipple, mid-clavicular line) or from observation from PSAX apical view, notch towards left shoulder and angled medially.	
Views	 A) Apical 4 chamber: center apex in the middle of the screen, with septum parallel to beam. Should see LV, RV, LA, RA B) Apical 5 chamber: tilt up towards patient's right shoulder until LVOT and AV comes into view 	
~		

В.

Apical 4 Chamber	(A4C)	

2D: LV/RV size and gross systolic function M-mode MAPSE (lateral): <12mm = LVEF reduced <6mm = LVEF <30% A) M-mode TAPSE: <17mm = reduced RV systolic fxn
 B) Color doppler: assessment for MR, TR, ASD, VSD C) CWD across TV: use TR jet to estimate PASP PASP = RVSP = 4V/TR velocity² = RAP

 $\begin{array}{l} \mathsf{PASP} = \mathsf{RVSP} = \mathsf{4V}(\mathsf{TR} \ \mathsf{velocity})^2 + \mathsf{RAP} \\ \mathsf{D}) \ \mathsf{PWD} \ across \ \mathsf{MV}: assess \ \mathsf{LV} \ diastolic \ function \\ \mathsf{E} = \mathsf{early} \ \mathsf{LV} \ \mathsf{filling}, \ \mathsf{A} = \mathsf{late} \ \mathsf{filling} \ (\mathsf{atrial} \ \mathsf{kick}) \\ \mathsf{Normal:} \ \mathsf{E} > \mathsf{A}, \ \mathsf{Mid} \in \mathsf{<A}, \\ \mathsf{Moderate:} \ \mathsf{E} > \mathsf{A}, \ \mathsf{Severe:} \ \mathsf{E} > \mathsf{A} \end{array}$

Annular Plane Systolic Excursion:

2D

M-mode

Doppler

Tricuspid Regurgitation: estimating PASP

Mitral inflow: evaluating LV diastolic function

	Apical 5 Chamber (A5C) Expert
2D M-mode	2D: AV, LV, LVOT appearance M-mode: LVOT and aortic root dimensions
Doppler	Color doppler: gross assessment for AR CWD: evaluate severity of AR and AS
Disease	Aortic Regurgitation: CWD across AV to measure jet deceleration rate (msec) Mild: >500, Moderate: 500-200, Severe: <200 Aortic Stenosis: CWD across AV to measure Vmax Bernoulli equation: peak gradient (mmHg) AP = 4(Vmax ² Mild: <20, Moderate: 20-40, Severe: >40 Continuity equation: use velocity time integral (VTI) and LVOT diameter (D) to measure aortic valve area (cm ²) AVA = (0.785 * D _{LVOT} ² × VTI _{LVOT} ¹ /VTI _{Jecta} Mild: >1.5, Moderate: 1.0-1.5, Severe: <1.0

Aortic Regurgitation

Aortic Stenosis

RV

RV

Subcostal Basic

osition	Patient: supine, legs bent to relax abdomen, de Transducer: probe below xiphoid and flat on the
ews	 A) Subcostal 4 chamber: point notch toward cephalad to visualize cardiac chambers (of patients with pulmonary disease) B) Subcostal IVC: probe perpendicular to abd pointing toward head, angle lateral for IVC and

Α

leep end-inspiratory hold ne abdomen

d right shoulder, angle often only cardiac CPR and for

domen, notch d medial for aorta

Subcostal Advanced		
2D M-mode	2D: similar to other 4-chamber views; only available view during CPR M-mode: IVC view assess intravascular volume status <i>during spontaneous</i> breathing RAP 0-5mmHg: <2.1cm + collapses <50% w/ sniff RAP 10-20mmHg: >2.1cm + collapses <50% w/ sniff	
	Subcostal Expert	
Doppler	Color doppler: assessment for MR, TR, ASD, VSD PWD: hepatic vein systolic flow reversal >0.3-0.4m/s suggestive of RV pressure/volume overload	
- 11		
	High CVP	

Suprasternal Expert		
Position	Patient: have pt look up and left Transducer: place in suprasternal notch with indicator pointed to 14:00; tilt probe up and down	
Disease	Aortic arch dissection: gross visualization Pulmonary hypertension: if RPA is smaller than aorta, filling pressures likely normal	

Co de la construcción de la cons	Α.
	L= L D= I If no refle 'min spin = ne
LUQ	

D= Diaphragm.

LV = Left ventricle. For best view, place probe in palm of hand and apply pressure below xiphoid process, use liver as acoustic window

NORMAL

Diaphragm pleural effusion, will see liver lection superior to diaphragm = rror sign' (arrow) and will not see ne continue superior to diaphragm negative spine sign

FAST Views

Probe Positing

RUQ

S= spleen: K= Kidney:

L = Liver; RV= Right ventricle;

ABNORMAL

Arrow = Free fluid in Morrison's pouch. between liver and kidney. Always include evaluation of the tip of the liver and inferior pole of the kidney.

DVT US		
Uses	- Suspected DVT/PE (when radiology not readily available or CTPE contra- indicated)	
Tips	Probe Selection: linear/vascular probe Compression technique: Hold the transducer in a transverse position, perpendicular to the skin surface - At each point described below, apply firm, downward pressure to achieve complete collapse of the vein. Study is positive if vein does not collapse with compression; utilize doppler to confirm flow and evaluate in longitudi- nal plane. - Common false positives: superficial thrombosis, cysts, lymph nodes, pseudoaneurysms	
Position	 Patient supine with hip slightly flexed + externally rotated. To evaluate popliteal vein compression is applied behind the knee in posterior knee crease 	

NORMAL CFV w/o COMPRESSION

NORMAL CFV w/ COMPRESSION

DVT OF CFV

Levels for Evaluation

Increasing # of levels = increased sensitivity

- Common femoral vein (CFV) (proximal to greater saphenous vein)
- 2. At sapheno-femoral junction
- 3. Just below sapheno-femoral junction
- 4. Proximal femoral vein (FV)*
- 5. Mid FV
- 6. Distal FV
- 7. Proximal popliteal vein (compress in posterior crease behind knee)
- The "femoral vein" (FV) has also been referred to as "the superficial femoral vein." Clots in the FV are considered deep vein thromboses.

Arrow = Free fluid around spleen. In LUQ, fluid is most likely to accumulate between the diaphragm and the spleen. It is also important to also evaluate the tip of the spleen and inferior pole of the kidney.

Arrow = pericardial fluid. This appears as an anechoic stripe between the liver and the myocardium.

B= Bladder, U=Uterus, In males, the prostate is located in a similar anatomical location as uterus. Fan the length of the bladder in both transverse and longitudinal (saggital) planes. Arrow = free fluid next to bladder in sagittal plane .