Pock	biratory Care ket Reference v2022.2	Positive Expirato Pressure
CC S () By collaborators &	Scan me with support from multiple institutions, including: I Care on Star West CHESA	Pressure (PIP)
(Oxygen Sources & Delivery Devices	Pressure (Pplat)
Nasal Cannula (NC)	Pros: Ubiquitous; commonly used up to 6LPM Cons: Requires humidification if >4LPM (risk of epistaxis); no work of breathing support 0; works with any pressure source via flow meter; FiO, increases 2-4% per LPM;	Pressure (Pdr)
Non- Rebreather/	variable FiO ₂ delivery based on patient's minute ventilation & flow rate Pros: ~High FiO ₂ Cons: Limited FiO ₃ if high respiratory drive; no work of breathing support	I:E and I Time (T
Face mask (NRB/FM)	 O: works with any pressure source via flow meter; simple FM 5-10 LPM (~FIO₂ 35-50%); NRB 10-15 LPM (~FIO₂ 60-95%); enough flow to prevent bag collapse Pros: High FIO, even with high minute ventilation; can titrate flow and FIO,; heated 	Minute V (MV)
High Flow Nasal Cannula	and humilified for comfort; may improve outcomes in acute hypoxemic respiratory failure compared to NIPPV or low-flow 0 ₂ ; small amount positive pressure may help with recruitment; high flow = deadspace washout, may help with work of breathing Cons: Requires special device; consumes massive amounts of oxygen	
(HFNC)	0 ₂ : Requires high pressure/flow source;>90% FiO ₂ (variable with minute ventilation, entraining room air around cannula) 3 types: 1) With blender to mix compressed air + 0.; 2) With port/Venturi effect to entrain room air and mix with compressed 0 ₂ ; or 3) Without blender.	Peak Flo
	Initial Settings: infant <1year = 8LPM; child 1-4 years = 10LPM; Child > 4 years = 20LPM; adolescents/adults = 40LPM flow and 100% Fi0; can titrate flow and/or Fi0 (max flow depends on cannula size; up to 60 LPM for adults and 100% Fi0.) if tolerated and 0, source adequate.	Complia
Non- invasive Ventilation (NIV) or	Pros: May avoid intubation in some patients (COPD, cardiogenic pulmonary edema, upper airway obstruction) by decreasing work of breathing and adding PEEP Cons: Risk of infectious aerosol generation (possibly less if helmet NIPPV); risk of aspiration if patient not alert / unable to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect acroupt to protect airway or if inspiratory pressures 200m M (or to much be act acroupt to protect acroupt to p	Inspirat Resista
Positive Pressure Ventilation	$\geq \! 20cm$ H_Q; pt must be alert enough to remove mask if uncomfortable; skin breakdown with prolonged use; confusing terminology: IPAP (inspiratory pressure) = PS + PEEP; EPAP (expiratory pressure) = PEEP; PS of "5 over 5" is the same as PS Δ 5 over 5, is the same as IPAP 10/EPAP 5	
(NIPPV) Trade name "BiPAP"	0_{z} : requires high pressure/flow source to achieve high FiO_{2} Initial Settings: PS _\Delta5-8/PEEP (EPAP) 5-10; titrate ΔP up to 15 to reduce inspiratory work; use higher initial IPAP with obese patients; higher pressures may require sedation in pediatric patients	
Continuous Positive	Pros: Delivered via face mask or multiple other potential interfaces to splint open the upper airway, increase lung volume & intrathoracic pressure Cons: Prolonged use is uncomfortable & causes skin breakdown; limited unloading	
Airway Pressure (CPAP)	of inspiratory muscles or provide complete respiratory support 0 ₂ ; requires high flow/pressure source to achieve high FiO ₂ Initial Settings (adults/peds): CPAP or PEEP 5-10; adults: titrate as needed up to 15; peds \leq 12; higher pressures may require sedation in peds	

<u>en</u> <u>ce</u> \Q		Oxygen Supp & Demand Calculator

<u>Oxy</u> Delivery De <u>& Supply</u>

Intervent toryPressure within respiratory circuit at end or expiration • Must be $\geq 5 \text{ cmH}_20$ in IMV to prevent derecruitment of alveoli • This value is always set by ventilator operatorIIre Peak inspiratory• Reflects pressure generated by airway/ETT resistance and compliance • Range 10-40cmH_0; target <40cmH_0 • target <40cmH_0 IIre Plateau• Reflects pressure in alveoli only • If in volume control, perform inspiratory pause (when there is no flow, there is no effect of resistance; Polat = Pressure at alveoli • Target <30cmH_0 (adults); <28 (peds); optimal $\leq 25 \text{ cmH}_20$ IIre Driving• Pdr = Pplat - PEEP • Tidal stress (lung injury and mortality risk) if elevated • Target <15cmH_0; mortality risk if $\geq 20 \text{ cmH}_20$ I Inspiratory T,)• It = ratio of Inspiration to Expiration • Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD • Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD • Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD • Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD • Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD • Normal 4:6 LPM: -lower if obtunded, hypothermic, deeply sedated; - higher 8:14 LPM in hypoxemic respiratory failure • Adjust for pCO, goal (e.g. permissive hypercarbia if ARDS); ~6-8 L/min in most intubated adults, may be $\geq 10-15$ L/min in ARDSFlow• Highest flow delivered by ventilator during inspiration • 40-60 LPM common; ~50-80 LPM if patien		
tory irre (PEEP) Must be ≥5 cmH,0 in IMV to prevent derecultment of alveoli This value is always set by ventiliator operator This value is always set by ventiliator operator Prevak inspiratory Reflects pressure generated by airway/ETT resistance and compliance Range 10-40cmH,0; target <40cmH,0 Iffeness Reflects pressure in alveoli only Iffeness Reflects pressure in alveoli only If in volume control, perform inspiratory pause (when there is no flow, there is no effect of resistance; Pplat = Pressure at alveoli Target <30cmH,0 (adults); <28 (peds); optimal ≤25 cmH,0 Inspiratory Pdr = Pplat - PEEP Tidal stress (lung injury and mortality risk if ≥20cmH,0 Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in astima or COPD Normal 1:2 or 1:3, in non ARDS, Consider TI 0:7-1 for ARDS Ventilation MV = V, x RF; where V, is the tidal volume (i.e. volume of each breath) and RF is the respiratory rate (breaths per minute) Normal 4:6 LPM; -lower if obtunded, hypothermic, deeply sedated; -highes 1:4 LPM in hypoxemic respiratory failure Adjust for pCO, goal (e.g. permissive hypercaribia if ARDS); -6-8 L/min in most intubated adults, may be ≥10-15 L/min in ARDS Ilow Highest flow delivered by ventilator during inspirator, such to may cause elevation in PIP Get AU / AP = Tidal volume of breath / Pdr		Respiratory Mechanics
 Range 10-40CliftyO, target 240CliftyO Reflects pressure in alveoli only If in volume control, perform inspiratory pause (when there is no flow, there is no effect of resistance; Pplat = Pressure at alveoli Target <30cmH_Q (adults); <28 (peds); optimal <25 cmH_Q IIre_Driving Pdr = Pplat - PEEP Tidal stress (ung injury and mortality risk) if elevated Target <15cmH_Q, mortality risk if <20cmH_Q IInspiratory I.E = ratio of Inspiration to Expiration Normal 1: 2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD Normal Ti ~ 1-1.5s in non ARDS; Consider Ti 0.7-1 for ARDS I Normal 4:6 LPM: -lower if obtunded, hypothermic, deeply sedated; -bighter 8-14 LPM in hypoxemic respiratory failure Adjust for pCO, goal (e.g. permissive hypercarbia if ARDS); ~6-8 L/min in most intubated adults, may be <10-15 L/min in ARDS Flow Highest flow delivered by ventilator during inspiration 40-60 LPM common; ~50-80 LPM if patient triggered mode Somatics (Dr) PACHP-PEEP) or static compliance (VT/Pplat-PEEP) measured at end inspiratory pause Range is 60-80mL/cmH_Q 0.Lyce; concern if ≥15cmH_Q/L/sec 	tory	 Must be ≥5 cmH₂0 in IMV to prevent derecruitment of alveoli
 If the volume control, perform inspiratory pause (when there is no flow, there is no effect of resistance; Pplat = Pressure at alveoli Target <30cmH_0 (adults); <28 (peds); optimal ≤25 cmH_0 Pdr = Pplat - PEEP Tidal stress (lung injury and mortality risk) if elevated Target ≤15cmH_0; mortality risk if ≥20cmH_0 Inspiratory It E = ratio of Inspiration to Expiration Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD Normal Ti ~ 1-1.5s in non ARDS; Consider Ti 0.7-1 for ARDS Ventilation MV = V, x RR; where V, is the tidal volume (i.e. volume of each breath) and RR is the respiratory rate (breaths per minute) Normal 4 = 0 LPM; ~lower if obtunded, hypothermic, deeply sedated; ~higher 8-14 LPM in hypoxemic respirators failure Adjust for pCO, goal (e.g. permissive hypecrabia if ARDS); ~6-8 L/min in most intubated adults, may be ≥10-15 L/min in ARDS Flow Highest flow delivered by ventilator during inspiration 40-60 LPM common; ~50-80 LPM if patient triggered mode Sometimes increasing flow can improve patient-ventilator synchrony; caution this may cause elevation in PIP iance (C) C = AV / ΔP = Tidal volume of breath / Pdr Pynamic compliance (VT/PPEEP) or static compliance (VT/Pplat-PEEP) measured at end inspiratory pause Range is 60-80mL/cmH_0/L/sec; concern if ≥15cmH_0/L/sec Must be measured during constant flow Normal <10cmH_0/L/sec; concern if ≥15cmH_0/L/sec Target ≤30 Inspiration Perp - Pilat/inspiratory flow Must be measured during constant flow Normal <10cmH_0/L/sec; concern if ≥15cmH_0/L/sec 	I re _{Peak Inspiratory}	
 Tidal stress (lung injury and mortality risk) if elevated Target ≤15cmH₂0; mortality risk if ≥20cmH₂0 Inspiratory It = ratio of Inspiration to Expiration Normal 1: 20 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated). 1:4 or 1:5 may be better in asthma or COPD Normal 1: ~ 1-1.5s in non ARDS; Consider Ti 0.7-1 for ARDS Ventilation MV = V, x RR; where V, is the tidal volume (i.e. volume of each breath) and RR is the respiratory rate (breaths per minute) Normal 4.6 LPNI; -lower if obtunded, hypothermic, deeply sedated; ~ higher 8-14 LPM in hypoxemic respiratory failure Adjust for pCO, goal (e.g. permissive hypercarbia if ARDS); ~6-8 L/min in most intubated adults, may be ≥10-15 L/min in ARDS Flow Highest flow delivered by ventilator during inspiration 40-60 LPM common; ~50-80 LPM if patient triggered mode Sometimes increasing flow can improve patient-ventilator synchrony; caution this may cause elevation in PIP iance (C) C = ΔV / ΔP = Tidal volume of breath / Pdr PEEP) or static compliance (VT/Pplat-PEEP) measured at end inspiratory pause Range is 60-80mL/cmH₂O in intubated patients; ARDS ≤40 Arget ≤10 - Pplat/inspiratory flow Normal <10 cmH₂O/L/sec; concern if ≥15cmH₂O/L/sec Inspiration Pdr Target ≤10 FEEP Target ≤10 Target ≤10 Target ≤10 Traget ≤10 Traget ≤10 Target ≤10 Target ≤10 Traget ≥20 Target ≤10	I re_{Plateau}	 If in volume control, perform inspiratory pause (when there is no flow, there is no effect of resistance; Pplat = Pressure at alveoli
 Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD Normal Ti ~ 1-1.5s in non ARDS; Consider Ti 0.7-1 for ARDS Ventilation MV = V, x RR; where V, is the tidal volume (i.e. volume of each breath) and RR is the respiratory rate (breaths per minute) Normal 4.6 LPM; ~lower if obtunded, hypothermic, deeply sedated; ~lights for pCO goal (e.g. permissive hypercarbia if ARDS); ~6-8 L/min in most intubated adults, may be ≥10-15 L/min in ARDS Highest flow delivered by ventilator during inspiration 40-60 LPM common; ~50-80 LPM if patient triggered mode Sometimes increasing flow can improve patient-ventilator synchrony; caution this may cause elevation in PIP iance (C) C = ΔV / ΔP = Tidal volume of breath / Pdr Dynamic compliance (VT/PPEEP) or static compliance (VT/Pplat-PEEP) measured at end inspiratory pause Range is 60-80mL/cmH₂O in intubated patients; ARDS ≤40 A = PIP - Piplat/inspiratory flow Normal -10 cmH₂O/L/sec; concern if ≥15cmH₂O/L/sec 	I re _{Driving}	 Tidal stress (lung injury and mortality risk) if elevated
and RR is the respiratory rate (breaths per minute) • Normal 4-6 LPM; -lower if obtunded, hypothermic, deeply sedated; · higher 8-14 LPM in hypoxemic respiratory failure • Adjust for pCO, goal (e.g. permissive hypercarbia if ARDS); -6-8 L/min in most intubated adults, may be ≥10-15 L/min in ARDS • Highest flow delivered by ventilator during inspiration • 40-60 LPM common; -50-80 LPM if patient triggered mode • Sometimes increasing flow can improve patient-ventilator synchrony; caution this may cause elevation in PIP iance (C) • C = ΔV / ΔP = Tidal volume of breath / Pdr • Dynamic compliance (VT/PIP-PEEP) or static compliance (VT/Pplat- PEEP) measured at end inspiratory pause • Range is 60-80mL/cmH ₂ 0 in intubated patients; ARDS ≤40 et atory trance (R) • Must be measured during constant flow • Normal <10cmH ₂ 0/L/sec; concern if ≥15cmH ₂ 0/L/sec • PIP • Target ≤40 • PEEP • Target ≤5 • Time		 Normal 1:2 or 1:3, 1:1 is only tolerated when paralyzed (and rarely indicated), 1:4 or 1:5 may be better in asthma or COPD
• 40-60 LPM common; ~50-80 LPM if patient triggered mode • Sometimes increasing flow can improve patient-ventilator synchrony; caution this may cause elevation in PIP iance (C) • C = ΔV / ΔP = Tidal volume of breath / Pdr • Dynamic compliance (VT/PIP-PEEP) or static compliance (VT/Pplat-PEEP) measured at end inspiratory pause • Range is 60-80mL/cmH₂O in intubated patients; ARDS ≤40 atory • Normal <10cmH₂O/L/sec; concern if ≥15cmH₂O/L/sec	• Ventilation	and RR is the respiratory rate (breaths per minute) • Normal 4-6 LPM; ~lower if obtunded, hypothermic, deeply sedated; ~higher 8-14 LPM in hypoxemic respiratory failure • Adjust for pCO, goal (e.g. permissive hypercarbia if ARDS); ~6-8 L/min
iance (C) • Dynamic compliance (VT/PIP-PEEP) or static compliance (VT/PIPat- PEEP) measured at end inspiratory pause • Range is 60-80mL/cmH ₂ 0 in intubated patients; ARDS ≤40 • R = PIP - Pplat/inspiratory flow • Must be measured during constant flow • Normal <10cmH ₂ 0/L/sec; concern if ≥15cmH ₂ 0/L/sec PIP Target ≤40 Pipt Target ≤15 PEEP Target ≥5 Time	low	 40-60 LPM common; ~50-80 LPM if patient triggered mode Sometimes increasing flow can improve patient-ventilator synchrony;
 Must be measured during constant flow Normal <10cmH_0/L/sec; concern if ≥15cmH_0/L/sec PIP Target ≤40 Pplat Target ≤15 PEEP Target ≥5 	iance (C)	Dynamic compliance (VT/PIP-PEEP) or static compliance (VT/Pplat- PEEP) measured at end inspiratory pause
Q Target ≤40 Pplat Target ≤30 Pdr Target ≤15 PEEP Target ≥5 Time	-	Must be measured during constant flow
Target ≥5 Time	Pressure (cmH ₂ 0)	Target ≤40 expiration Pplat Target ≤30 inspiration Pdr Target ≤15
	-	
		-

Assist Control (AC) Volume Mode is default for non-spontaneous breathing patients or ARDS
 AC Pressure Mode & Dual Modes can be used for non-spontaneous breathing patients or ARDS
 PSV if spontaneous breathing and non-ARDS; SIMV and APRV have no data to support regular use

	Volume Control		Pressure Control		Pressure Support
Other Names	AC-VC; Assist Control Volume Control; VCV; ~CMV (controlled mandatory ventilation = all modes with RR and fixed T,); (S)CMV	Other Names	AC-PC; Assist Control Pressure Control; ~CMV - PC	Other Names	PS; PSV; Spontaneous
Controlled	RR, V _T , PEEP, FiO ₂ , Trigger level, Flow pattern, I:E (either directly or	Controlled Variables	RR, Pinsp (or PC level), PEEP, FiO ₂ , Flow trigger, Rise time, I:E (set directly or by Inspiratory time, T,)	Controlled Variables	Pinsp (PS), PEEP, FiO ₂ , Flow trigger, Rise time
Variables Initial Settings Adult & Pediatric (More details on next page)	via peäk flow, T, settings) 1. Set V _r at 6-8 mL/kg predicted body weight (PBW) 2. Set RR: <u>Adults</u> : set at pt's most recent RR (do not exceed 35); <u>Peds</u> : set at most recent RR (do not exceed 60 bpm in infants, 40 bpm in toddlers/preschoolers, 35 bpm in school-aged children or adolescents) 3. Set T; <u>Adults</u> 0.70-1 sec; <u>Peds</u> based on RR to maintain a minimum ratio of 1:2	Initial Settings Adult & Pediatric (More details on next card)	 Set inspiratory pressure (Pinsp) at 8-20cmH_0, or set equal to previous Pdr, Pplt or ~1/2 of PIP if transitioning from VC (goal 6-8 m:/ Kg PBW Set RR: <u>Adults</u>: set at pt's most recent RR (do not exceed 35); <u>Peds</u>: set at most recent RR (do not exceed 60 bpm in <u>infants</u>, 40 bpm in toddlers/preschoolers, 35 bpm in school-aged children or adolescents) Set T₁: <u>Adults</u> 0.70-0.85 sec; <u>Peds</u> based on RR to maintain a minimum ratio of 1:2 	Initial Setting Adult & Pediatric (More details on next card) Flow	Use for Spontaneous Breathing Trial (SBT): 1. Set Pinsp $\Delta 5-10 \text{ cmH}_20 \text{ accounting for ETT size (3.0/3.5mm = 10 \text{ cmH}_20; 4.0/4.5mm = \Delta 8 \text{ cmH}_20; 2.5mm = \Delta 5 \text{ cmH}_202. Set PEEP 5-8 cmH203. FiO2 \leq 0.40 \text{ (Peds) or } \leq 0.50 \text{ (Adults) per SBT initiation criteria}• Decreasing ramp (potentially more physiologic)• Determined by 1) PS level; 2) Airway resistance (Raw); 3), Rise time (r Rise time> \downarrow Peak flow) and 4) Pt effort$
Flow	4. Select FiO ₂ and PEEP (use ARDSnet grid if applicable; see next page	Flow	A. Select Fi0 ₂ & PEEP (use ARDSnet grid if applicable; see next page Variable/decreasing ramp (potentially more physiologic)	I:E	Determined by patient effort and flow termination (" ${\sf E}_{{\sf sens}}$ " - see below "Breath Termination")
Flow	Square wave/constant/fixed; or Variable/decreasing ramp (potentially more physiologic); 40LPM healthy, 60LPM ARDS	FIUW	 Peak Flow determined by: 1) Pinsp level, 2) R, 3) T₁(shorter = more flow), 4) Pressure rise time (↓ Rise time → ↑ Peak flow), 5. Pt effort (↑ Effort → ↑ Peak flow) 	Pros	Synchrony: allows pt to determine peak flow, $\mathbf{V}_{_{\rm T}},$ and $\mathbf{T}_{_{\rm i}}$
I:E	 I:E of 1:2 or 1:3 is best for most patients; Normal Ti ~ 1-1.5s in non ARDS patients; Consider Ti 0.7-1 for ARDS I:E of 1:1 or >1:1 associated with PEEPi, decreased cardiac output (CO) and oxygen delivery Process for setting I:E may vary by ventilator make; commonly by changing Ti, inspiratory flow and flow pattern 	I:E	 I:E of 1:2 or 1:3 is best for most patients; Ti 0.7-1s for ARDS I:E 1:1 or >1:1 associated with PEEPI, decreased C0 & 0₂ delivery Determined by set T₁ and RR (Volume and flow variable) 	Cons	 No guaranteed MV; V, determined by pt (big or small); high PS and/or low E, in COPD can incr air-trapping asynchrony; muscle weakness/fatigue: ↓ effort or ability to sustain effort> hypoventilation, ↑ fatigue
Pros	Guaranteed MV regardless of changing respiratory system mechanics; precise control of V, to limit volutrauma	Pros	 Avoids high PIPs Variable flow (↑ pt effort causes ↑flow to maintain constant airway 	Breath Initiation	Pt flow or pressure triggered; Flow (3-5LPM) more sensitive than pressure trigger (~2cmH_20)
Cons	Will overcome high resistance or compliance to deliver set V ₁ (must set pressure limit & alarm); breath stacking (i.e. next breath delivered before exhaltion of prior breath); fixed flow and T _c can increase asynchrony when V ₁ & flow demand > vent settings		 variable flow (γ pt enor causes) how to maintain constant an way pressure = potentially better synchrony; ↑ pt effort → ↑ flow and ↑ V_γ) "Automated/active expiratory valves" (transiently opens expiratory valve to vent off pressure with coughing, asynchrony); ↑ comfort and ↓ barotrauma risk 	If No Patient Trigger Breath Termination	Apnea (Most vents will have backup rate; all have alarm) Flow cycled: Delivers Pinsp until flow drops to predetermined % of initial peak flow ~Esens (Standard setting ~25%; ~40-50% if obstructive pulmonary disease to prevent air trapping)
Breath Initiation	Control: Time trigger (60s/set RR): fixed VE	Cons	V_{τ} and MV not guaranteed; V_{τ} determined by C and R (might be bigger or smaller than is optimal)	Notes	PS mode is not necessarily equivalent to a spontaneous breathing trial (SBT); must know if PS is relative to PEEP or ambient
If No Patient Trigger	Assist: Pt effort triggers full breath at set T_i , V_T , and flow rate Delivers full set V_T at set rate (i.e. guaranteed VE)	Breath Initiation	Control: Time trigger - (60s/set RR) Assist: Pt trigger delivers Pinsp for inspiratory time cycle		3
Breath	Time cycled = breath ends at set T_i , alarms if V_T not achieved; flow is set, breath ends once V, delivered	If No Patient Trigger	Delivers Pinsp at set rate and T _i		Ē
Termination	Pressure cycled = safety mechanism; breath termination by clinician set high-pressure limit (10-15cmH2O>avg PIP); "pop-off"	Breath Termination	Time cycled = I:E or T _i set, breath ends at set time		۵ مار
Notes	 Inspiratory pause (~0.3s) can be built into each breath, will increase mean airway pressure; can measure Pplat Alarms: high pressure 5-10 > PIP, VE 50% above+below actual Trigger: 2-5 Lpm for flow; -2 cmH₂0 for pressure 	Notes	 Pplat is the set inspiratory pressure Alarms: high pressure 5-10 > PIP, VE 50% above+below actual Trigger: 2-5 Lpm for flow; -2 cmH₂0 for pressure Unlike in VC, in PC the ventilator cannot compensate for volume lost to circuit compliance (i.e. V₄ delivered may be less than V₇ measured and my be significant especially in pediatrics) 		Dual (Control) Mode
	ating Flow Constant Flow	*	Decelerating Flow	Other Names & Function	• Pressure regulated volume control (PRVC); VC+, AutoFlow • ~PC with a target V_{τ} & variable Pinsp (Δ 1-3cmH2O per breath) to meet goal V_{τ} despite changing C and R;
Elow		Flow		Pros	• ↓ likelihood of hypo/hyperventilation associated with PC.

Ľ

	Dual (Control) Mode					
Other Names & Function	• Pressure regulated volume control (PRVC); VC+, AutoFlow • ~PC with a target V ₇ & variable Pinsp (Δ 1-3cmH20 per breath) to meet goal V ₇ despite changing C and R;					
Pros	 ↓ likelihood of hypo/hyperventilation associated with PC. If R or C changes, Pinsp automatically adjusts to keep target V_T Active expiratory valve (unlike AC-VC) promotes synchrony 					
Cons	 C & R can change significantly without notification Vent can't discern if V_T>target is due to ↑ pt effort or ↑ C; vent response to both = ↓ Pinsp; Can lead to closed-loop "runaway" (↓ Pinsp> ↑ Pt Effort> ↓ Pinsp)= ↑ Pt work; must carefully set alarms 					

Respiratory Care, Setup, & Monitoring

Ventilator Setup (prior to connecting patients)	 Inspect all equipment for <u>cleanliness</u> or damage Review circuit orientation, filters, & heat & humidification system Ensure gas supply connected Perform machine self-test with new patient and per manufacture (ensure leak test included) Confirm initial settings and alarms 	When to Use LPV?	All ARDS patients and most intubated non-ARDS patients will benefit from LPV, though there are some instances where departures from LPV are justified. ARDS Berlin Definition for Adult ARDS with Kigali Modification 1) Acute (within 1 week of new symptoms or insult) 2) Bilateral opacities on CXR or Chest CT or chest US 3) P:F = s300 or S:F < 315 with or without >5 cmH ₂ 0 PEEP 4) Not fully explained by cardiac failure or fluid overload on exam
Ventilator Performance	 Perform Full Status Check q4h: (PIP, Pplat, V, , FiO₂, auto-PEEP, Alarms, SpO₂, ETCO₂ in addition to routine ICU monitoring) Evaluate vent & patient within ~1h of ventilator settings changes Wipe down ventilator with approved disinfection qShift 		Pediatric ARDS (pARDS) Definition 1) Acute (within 1 week of new symptoms or insult) 2) Infiltrate(s) on chest imaging consistent with acute lung disease 3) <u>Non-Invasive Ventilation</u> ; P:F ≤300 or S:F ≤264 with CPAP ≤5 cmH ₂ 0 <u>Invasive Ventilation</u> ; Oxygen Index (01) ≥4 or Oxygen Saturation
Pulmonary, Endotracheal Tube & Circuit	Check cuff pressure and auscultate q12h to avoid over-inflation/leak (<25 cmH ₂ 0); consider 'minimal occluding volume' in peds Check inflation of pilot balloon to ensure it remains inflated Reposition & secure endotracheal tube with skin checks q12h		Index (OSI) 25 4) Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease
Hygiene	 Check ventilator circuit qShift for moisture accumulation (drainage); change circuit only if damaged or gross contamination (Ventilator Associated Pneumonia Prophylaxis -VAP PPx) Head of bed 30 degrees elevated for pneumonia prophylaxis (VAP 	Acute Respiratory Distress Syndrome (ARDS)	Severity Grading of ARDS (Correct for altitude) Aduit: P:F (Pa02 ÷ Fi02) Peds: 01 & 0SI Mild P:F 200-300, ~27% mortality 01 4-7.9; 0SI 5-7.4 Moderate P:F 100-200, ~32% mortality 01 8-15.9; 0SI 7.5-12.2
	PPx) Oral hygiene with mouthwash & suctioning TID (VAP PPx) 		Severe PF: <100, ~45% mortality 0I>16; 0SI>12.3 If P:F <150 and worsening ARDS, consider adjunctive therapies
	 Consider continuous subglottic suctioning or q12h oropharyngeal suctioning (VAP PPx) 	Tidal Volume (V _T)	Measure height & calculate <u>predicted body weight (PBW)</u> (See table) Set initial V ₁ 6 mL/kg PBWv(AC-VC)
Filters	 All <u>external filters</u> should be inspected >daily (and after nebs) Replace <u>viral filters</u> as frequently as supplies allow in accord with the manufacturer's recommendations or if damaged/soiled (may last >1 week) 	(Goal 4-6 mL/Kg PBW)	 Check V_τ at least every 4h (PC or if weaning PS mode) Titrate V_τ by pressure goals & pH (below) If pH < 7.15 consider increase V_τ toward 8mL/kg regardless of Pplat
	 For turbine & compressor ventilators, <u>external inlet filters</u> & <u>fan filters</u> must be cleaned at least monthly. For ventilators that allow, bacterial/ viral filters should be placed proximal to external intake filters 	Pressures	Check Pplat (0.5s inspiratory pause) & Pdr (deltaP=Vt/C $_{\rm \tiny RS}$ = Pplat-PEEP) \sim q4-6h and after each change in PEEP or V $_{\rm T}$
	Minimize instrumental/filter deadspace	(Adults Goals:	 If adult Pplat >30 cmH₂0 (>28 Pediatrics), optimize sedation (±paralysis) and decreasing V_T by 0.5-1 cc/kg toward ~4 mL/kg
Heat & Humidification	 <u>Active system</u>: must use distilled or sterile water (~>500mL daily) to avoid infectious risk and device damage; can be made on site or purchased; check H20 supply q12-24h 	Pplat< 30 cmH ₂ 0 and Pdr < 15 cmH ₂ 0)	- If Pplat <30 cmH 0 and severe patient-ventilator dyssynchrony that cannot be addressed pharmacologically, consider increase V_{τ} in 1 mL/ kg steps up to 8 mL/kg
numumcation	 <u>Passive heat moisture exchanger</u> (HME): Only some HME include pathogen filter capability; Many manufacturers suggest change q24h, but studies show that an unsoiled HME in some circumstances 	(Pediatric Goal: Pplat<28cmH ₂ 0)	 If Pplat <25 cm H₂O and V₁ <6 mL/kg, increase V₁ to 6 mL/kg If PEEP ≥20 then use Pdr goal <15 (rather than Pplat goal)
	can be used for 3-7 days. Nebs decrease lifespan (and must be given via bypass or with HME removed from circuit). Monitor for signs of an increased resistance (e.g. increase in PIP but no change in Pplat, or a prolonged exp flow). Ensure at least 28-30 mgH20/L efficiency	Respiratory Rate (RR) & Inspiratory Time	Set RR at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec) • When changing V _r , adjust RR to keep target VE by goal pH (~8-12 L/
Respiratory Specific Monitoring	 Continuous pulse oximetry, if unable then spot check as frequently as possible Continuous capnography, if unable then spot check as frequently as 	(Ti)	min in acute ARDS) • Consider lower RR if evidence of obstructive ventilatory defect • Increase RR if pH <7.30 and decrease RR if pH >7.45 • Keep duration of inspiration \leq expiration
Monitoring	possible, especially after major ventilator settings changes • Auscultation performed routinely with checks • Skin/Mucosal Assessments qShift	PEEP & FiO2 (Goal to minimize)	 Start at 5 cmH, 0 PEEP for 2min, if stable hemodynamics, then Select one of the following PEEP / FIO, titration strategies for goal Pa0, 55-80 mmHg or Sp0, 88-95% (In ARDS, PEEP usually ~10-14 cmH,0).
Contingency	Ensure manual (i.e. bag valve resuscitator) ventilation device is	`````	 When ↑ PEEP, if Pplat ↑ more than △ PEEP, think over-distension
Planning	operational and at beside along with a face mask and PEEP valve	Lower PEEP/hig Fi0, 0.3 0.4 0.4	her Fi02 Strategy (*Default - May consider if low Pdr or pediatrics) 0.5 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0
	to be educational in nature and is not a substitute for clinical decision making based on	PEEP 5 5 8	0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.1 1.8 </td

the medical condition presented. It is intended to serve as an introduction to terminology. It is the responsibility of the user to ensure all information contained herein is current and accurate by using published references. This card is a collaborative effort by representatives of multiple academic medical centers

		Lun	g-Protective Ventilation (LPV)		Adjur	nctive Therapies
n e		When to Use LPV?	All ARDS patients and most intubated non-ARDS patients will benefit from LPV, though there are some instances where departures from LPV are justified. ARDS Berlin Definition for Adult ARDS with Kigali Modification 1) Acute (within 1 week of new symptoms or insult)		Fluid Management	Concentrate IV medicatio tolerated with goal of euvol <u>FACTT Trial</u> of conservative fluid strategy improved oxy increased shock. However,
s			2) Bilateral opacities on CXR or Chest CT or chest US 3) P:F ≤300 or S:F <315 with or without ≥5 cmH ₂ O PEEP 4) Not fully explained by cardiac failure or fluid overload on exam Pediatric ARDS (pARDS) Definition 1) Acute (within 1 week of new symptoms or insult) 2) Infiltrate(s) on chest imaging consistent with acute lung disease		Paralysis	May be considered in sev asynchrony present; requi Choice of agent (each with atracurium, rocuronium, pa <u>ACURASYS Trial</u> showed n Short term paralysis elimina
/look			3) <u>Non-Invasive Ventilation</u> ; P:F ≤300 or S:F ≤264 with CPAP ≤5 cmH ₂ 0 <u>Invasive Ventilation</u> ; 0xygen Index (0I) ≥4 or 0xygen Saturation Index (OSI) ≥5	!	_	accurately assess respirato
/leak lge); tor		Acute Respiratory Distress Syndrome (ARDS)	4) Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease Severity Grading of ARDS (Correct for altitude) Adult: P:F (Pa02 + FI02) Peds: 01 & 0SI Mild P:F 200-300, ~27% mortality 01 4-7.9; 0SI 5-7.4		Prone Positioning	 Prone patient for ~12-16i PEEP remaining <10 cmH₂(Alternate with supine pos Do not need special bed; If unable to prone, could pi <u>PROSEVA Trial</u> showed model
AP		(ANDO)	Moderate P:F 100-200, ~32% mortality OI 8-15.9; OSI 7.5-12.2 Severe PF: <100, ~45% mortality		Pulmonary Vasodilator Therapy	 No mortality benefit, may Inhaled Prostacyclin Initia min); should be weaned (11 consider wean by 1ppm) to
al		Tidal Volume (V_{T})	Measure height & calculate predicted body weight (PBW) (See table) Set initial V, 6 mL/kg PBWv(AC-VC)			Inhaled Nitric Oxide (iNO) increments q30min) to avo
th /		(Goal 4-6 mL/Kg PBW)	 Check V_τ at least every 4h (PC or if weaning PS mode) Titrate V_τ by pressure goals & pH (below) If pH < 7.15 consider increase V_τ toward 8mL/kg regardless of Pplat 	ŀ	Ade	Caution if reduced left ven <50, or anticoagulation
<u>filters</u> terial/		Pressures	Check Pplat (0.5s inspiratory pause) & Pdr (deltaP=Vt/C $_{\rm \! RS}$ = Pplat-PEEP) ~q4-6h and after each change in PEEP or V $_{\rm \! T}$			y Weight (PBW) (kg)
		(Adults Goals:	- If adult Pplat >30 cmH _0 (>28 Pediatrics), optimize sedation (±paralysis) and decreasing V_ tby 0.5-1 cc/kg toward ~4 mL/kg			2.3 [height (inches) - 60] 5 + 2.3 [height (inches) -60]
ly) e or		Pplat<30cmH ₂ 0 and Pdr <15 cmH ₂ 0)	 If Pplat <30 cmH,0 and severe patient-ventilator dyssynchrony that cannot be addressed pharmacologically, consider increase V_T in 1 mL/ kg steps up to 8 mL/kg 	7	Height PBW 58" (147cm) 40.9/45.	enizing i
e ances		(Pediatric Goal: Pplat<28cmH ₂ 0)	 If Pplat <25 cm H₂0 and V₇ <6 mL/kg, increase V₇ to 6 mL/kg If PEEP ≥20 then use Pdr goal <15 (rather than Pplat goal) 		60" (152cm) 45.5/50 62" (157cm) 50.1/54 64" (163cm) 54.7/59	6 kg 200/218 251/273 2 kg 219/237 274/296
given of an t, or a		Respiratory Rate (RR) & Inspiratory Time	Set RR at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec) • When changing V _n adjust RR to keep target VE by goal pH (~8-12 L/		66" (168cm) 59.3/63. 68" (173cm) 63.9/68. 70" (178cm) 68.5/73	4 kg 256/274 320/342
itly		(Ti)	min in acute ARDS) • Consider lower RR if evidence of obstructive ventilatory defect • Increase RR if pH <7.30 and decrease RR if pH >7.45		Use when blood	s for P:F Ratio gas analysis unavailable <u>(Link t</u>
y as		(Goal based on pH)	Keep duration of inspiration ≤ expiration		SpO ₂ Values Co	rresponding to P:F \leq 150:
		PEEP & FiO2 (Goal to minimize)	 Start at 5 cmH₂O PEEP for 2min, if stable hemodynamics, then Select one of the following PEEP / FiO₂ titration strategies for goal PaO₂ 55-80 mmHg or SpO₂ 88-95% (In ARDS, PEEP usually ~10-14 cmH₂O). 		Measured 96%	I SpO ₂ Imputed PaO ₂ 82 mmHg
		, ,	 When ↑ PEEP, if Pplat ↑ more than ∆ PEEP, think over-distension 		95% 94%	76 mmHg 71 mmHg
e			her FiO₂ Strategy (*Default - May consider if low Pdr or pediatrics)		93%	67 mmHg
	1	FiO ₂ 0.3 0.4 0.4	0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.9 0.9 1.0		92%	64 mmHg

Higher PEEP/lower FiO, Strategy (May consider if Pa02/FiO2 is <100, high Pdr, or BMI>40)

PEEP 5 8 10 12 14 16 16 18 20 22 22 22 24

0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.8 0.8 0.9 1.0 1.0

Fi0.

Concentrate IV medications and consider diuresis once hemodynamically tolerated with goal of euvolemia FACTT Trial of conservative vs. liberal fluid strategy showed conservative fluid strategy improved oxygenation, more ventilator-free & ICU-free days, no increased shock. However, no mortality benefit.	dju	nctive Therapies for ARDS Hypoxemia
	nent	tolerated with goal of euvolemia • FACTT Trial of conservative vs. liberal fluid strategy showed conservative fluid strategy improved oxygenation, more ventilator-free & ICU-free days, no

May be considered in severe ARDS if high PEEP and Fi02, especially if asynchrony present: requires adequate sedation and train of four monitoring

- Choice of agent (each with pros & cons. may vary by setting): cisatracurium. atracurium, rocuronium, pancuronium, or vecuronium
- ACURASYS Trial showed mortality benefit: PETAL Trial did not
- Short term paralysis eliminates work of breathing and can be helpful to accurately assess respiratory mechanics & asynchronies associated w/ ARDS
- Prone patient for ~12-16h at a time, continue proning until P:F >150 with PEEP remaining <10 cmH₂O while patient is supine for >4h
- Alternate with supine positioning which allows for patient care
- Do not need special bed; manually proning requires a team
- · If unable to prone, could put less diseased lung down to improve V/Q match
- PROSEVA Trial showed mortality benefit
- No mortality benefit, may improve oxygenation in subset of patients, \$\$\$ Imonary
 - Inhaled Prostacyclin Initial Dose: 50 ng/kg/min PBW (range 10-50 ng/kg/ min); should be weaned (10 ng/kg/min increments q30min; once at 5ppm consider wean by 1ppm) to avoid hemodynamic compromise
 - Inhaled Nitric Oxide (iNO) Initial Dose: ~20ppm: should be weaned (5 ppm) increments q30min) to avoid potential hemodynamic compromise
 - Caution if reduced left ventricular function, pulmonary hemorrhage, platelets < 50. or anticoagulation

Additional LPV Reference Calculations

edicte Males Female	<u>Scan for PB</u> <u>Calculate</u>				
leight	PBW f/m	4mL/Kg f/m	5mL/Kg f/m	6mL/Kg f/m	7mL/Kg f/m
(147cm)	40.9/45.4 kg	164/182	205/227	245/272	286/318
(152cm)	45.5/50 kg	182/200	228/250	273/300	319/350
(157cm)	50.1/54.6 kg	200/218	251/273	301/328	351/382

60" (152cm)	45.5/50 kg	182/200	228/250	273/300	319/350	364/400
62" (157cm)	50.1/54.6 kg	200/218	251/273	301/328	351/382	401/437
64" (163cm)	54.7/59.2 kg	219/237	274/296	328/355	383/414	438/474
66" (168cm)	59.3/63.8 kg	237/255	297/319	356/383	415/447	474/510
68" (173cm)	63.9/68.4 kg	256/274	320/342	383/410	447/479	511/547
70" (178cm)	68.5/73 kg	274/292	343/365	411/438	480/511	548/584

<u>o source data)</u>	Scan for Imputed P:F Galculator
-----------------------	---------------------------------------

SmL/Kg f/m 7mL/Kg f/m 8mL/Kg f/m

Measured SpO ₂	Imputed PaO ₂	Fi0 ₂	Imputed P:F
96%	82 mmHg	≥0.6	<u>≤</u> 137
95%	76 mmHg	<u>≥</u> 0.5	<u>≤</u> 152
94%	71 mmHg	<u>≥</u> 0.5	<u>≤</u> 142
93%	67 mmHg	≥0.5	≤134
92%	64 mmHg	≥0.5	<u>≤</u> 128
91%	61 mmHg	<u>≥</u> 0.4	<u>≤</u> 153
90%	59 mmHg	<u>≥</u> 0.4	<u>≤</u> 148
<89%	≤57 mmHg	≥0.4	≤150

High Pressures, Desaturations & Dyssynchrony

General Considerations

327/363

- □ Is the ventilator set to Fi0, 100% while you troubleshoot? Is the patient hemodynamically unstable? If so, consider pressors & urgent evaluation for
- pneumothorax or severe auto-PEEP. Is the ventilator circuit connected & set correctly?
- Are breath sounds bilateral? If unilateral, consider mainstem ETT, lobar collapse, atelectasis, and
- pneumothorax

High Pressures

- Is the patient agitated or asynchronous?
- Can a suction catheter pass easily through the endotracheal tube? If no, consider kinked tube, biting/bite block, secretions/suction, or replace ETT.

Troubleshooting low compliance: Decrease V, & evaluate for breath stacking (auto-PEEP). Consider | PEEP or adjunct therapies for hypoxemia if decrease in PEEP causes desaturations.

Troubleshooting high resistance: Work outside (machine) to inside (alveoli); circuit problem, ETT kink/occlusion/biting. ETT obstructed/mainstem. large airway obstruction (mucous plug). small/ medium airway obstruction (bronchospasm); auscultation & passing a suction catheter can quickly eliminate many of these.

Desaturations

- Is the endotracheal tube in good position? (consider CXR)
- Is the pulse oximetry waveform good quality?
- □ Is there acute hypotension? Evaluate for tension pneumothorax, air trapping and pulmonary embolism
- Is the source of oxygen faulty or is there an air leak? Check each connection/element sequentially from source of oxygen to the patient.
- Are there concomitant pressure elevations? If so, see "High Pressures" (next column)
- □ Is P:F <150 in setting of worsening ARDS? If so, consider adjunct therapies (above).
- Are there signs of infection? Consider ventilator-associated pneumonia.

Patient-Ventilator Dyssynchrony

- · Detect signs of dyssynchrony: coughing, paradoxical breathing, ventilator alarms (low tidal volumes or high pressures), breath stacking.
- Treat underlying causes: 1) Ineffective triggering (patient or ventilator); 2) Inappropriate triggering (patient inspires while ventilator expires); 3) Auto-triggering (non-respiratory muscle movement triggers ventilator); 4) Flow dyssynchrony (too fast or too slow)

General Approach

- Treat pain or anxiety if present
- If ineffective ventilator triggering change trigger sensitivity, decrease VT or pressure
- Increase V, to 8 mL/kg and increase flow rate if pressures allow. Consider change to
- decelerating flow delivery if setting available. If still dyssynchronous, paralyze patient (and sedate patient to RASS goal -5)

Discomfort & Delirium

Discomfort (pain, agitation, anxiety) & Delirium

- Ensure appropriate analgesia & sedation to minimize ICU/IMV duration & risk of long-term neuropsychiatric impact.
- Reassess every \leq 4 hours using a standardized scale
- Goal RASS -4 to 0 in intubated patients
- If RASS -4 tor -5 consider lightening sedation unless patient is paralyzed or dyssynchronous with ventilator.
- Target RASS -5 for paralyzed patients. Never paralyze without sedation
- Perform Daily Sedation Interruptions (DSIs) in non-paralyzed patients to reassess sedation & analgesia needs, which can guide weaning these medications.

Delirium: Prevention & treatment of delirium reduces mortality and ICU/IMV duration

- Screen every 12h using standardized tool (i.e. CAM-ICU)
- Treat delirium by addressing underlying causes (pain, agitation. anxiety, or physiologic derangements

Ventilator Weaning & Extubation

Spontaneous Breathhing Trial (SBT) Initiation Criteria & Considerations

- Patient likely to trigger ventilator, stable Fig. < 0.50 adults (< 0.40 pediatrics) and PEEP <8</p>
- pH > 7.30. VE < 15 L/min</p>
- ~MAP > 60 mmHq (minimal pressors)
- ICP: non-labile and < 20 mmHq w/ CPP > 60 mmHq
- No MI in previous ~48hr

Weaning Strategies

- Once daily SBT PS Δ 5-7 cmH₂O if ETT size > 5 (Δ 8 cmH₂O if ETT 4-4.5; Δ 10 cmH₂O if ETT 3-3.5) in addition to PEEP 5-8 cmH₂O (2nd daily trial ok if failure sedation-related or due to transient issue); Consider additional ∆ 3-5 cmH₂O of PS if HME used
- SBT x 30min ~probably as good as SBT x 2hr or longer for most adult patients
- If adult with cardiogenic pulmonary edema risk: Consider 15min T-piece (i.e. no PS or PEEP)
- RSBI (rapid Shallow Breathing Index) = f/V_{x} ; RSBI is **unreliable**; <80 goal for extubation; sensitive, not specific (if > 105, good predictor of failure)
- Coupling daily sedation interruption, early mobility, & SBT is associated with faster extubation

Extubation Criteria

- Have you fixed the original problem and no upcoming procedures?
- Adequate **oxygenation**? (Pa0, $> \sim 60$ on PEEP ≤ 8 cmH₂0, Fi0, ≤ 0.50)
- Adequate ventilation without excessive work of breathing? (△PaCO_a ↑ of < 10 mmHg with</p> remaining pH > 7.30 during SBT)
- Secretions? (assess cough strength, suction frequency & secretion volume)
- Airway protection? (assess gag, spontaneous cough and GCS)
- Assess risk of post-extubation airway obstruction:
- Consider cuff leak test if: intubation >6d, trauma, multiple intubations, prolonged prone, flat, volume overload, head/neck trauma, among others
- Cuff Leak Test: 1. pt must be sedated (interaction with vent = incr PIP= incr leak = false reassurance); 2. Suction oropharvnx; 3. Initiate AC-VC V. 8 mL/kg, RR 12, Ti; 1.5sec, Flow 50 LPM; 4. Measure expired V.; 5. Deflate cuff and wait 6 breaths; 6. Measure expired V, (should 1 by >110mL to predict low risk of stridor post extubation): 7. Reinflate cuff
- Decrease aspiration risk by holding tube feeds for safe interval (~6-8h)
- Extubation criteria/goals for neuro patients may be different (e.g. visual tracking, swallowing, GCS>10. <40vo)
- Hemodynamics re-intubation of an unstable patient can be lethal

