Respiratory Care Pocket Reference

Oxygen Sources & Delivery Devices

- **Nasal Cannula (NC)**
 - High flow: <3LPM, better tolerated, less need for sedation
 - Low flow: >5LPM, higher oxygen flow
 - High flow: >10LPM, better tolerated, less need for sedation
 - Low flow: <2LPM, worse tolerated, longer time for sedation

- **Non-Rebreather Mask (NRB)**
 - High flow: >15LPM, better tolerated, less need for sedation
 - Low flow: <10LPM, worse tolerated, longer time for sedation

- **High Flow Nasal Cannula (HFNC)**
 - High flow: >10LPM, better tolerated, less need for sedation
 - Low flow: <5LPM, worse tolerated, longer time for sedation

- **Continuous Positive Airway Pressure (CPAP)**
 - High flow: >15LPM, better tolerated, less need for sedation
 - Low flow: <10LPM, worse tolerated, longer time for sedation

Choosing a Ventilator Mode

- **Assisted Control (AC)**: Fixed minute ventilation is delivered if spontaneous breathing exceeds ventilator rate or SES.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Pressure Control (PC)**: Fixed tidal volume is delivered if spontaneous breathing exceeds ventilator rate or SES.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Volume Control (VC)**: Fixed tidal volume is delivered at a set respiratory rate.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Synchronized Intermittent Mandatory Ventilation (SIMV)**: A combination of AC and PC.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

Leakage

- **Adverse Effects**
 - High leak: may cause hypoxemia and hypercapnia.
 - Low leak: may cause hypercapnia and hypoventilation.

Respiratory Mechanics

- **Minute Ventilation (MV)**: Calculated as VT x respiratory rate (RR).
 - Normal: >10 mL/kg

 - Reduced: <7 mL/kg

- **Peak Flow**
 - Normal: 10-20 LPM

 - Reduced: <10 LPM

- **Compliance (C)**
 - Normal: 0.05-0.1 mL/cmH2O

 - Reduced: <0.05 mL/cmH2O

- **Resistance (R)**
 - Normal: 0.1-0.3 cmH2O/ LPM

 - Increased: >0.5 cmH2O/ LPM

Other Names

- **AC-VC**: Assist Control/Volume Control

- **CMV**: Continuous Mandatory Ventilation

- **SIMV**: Synchronized Intermittent Mandatory Ventilation

Other Parameters

- **PEEP**
 - Positive End-Expiratory Pressure: Prevents alveolar collapse during exhalation.

Positive End-Expiratory Pressure (PEEP)

- **Pressure**
 - Pressure-controlled ventilation prevents alveolar collapse and promotes normal lung function.

- **Flow**
 - Flow-controlled ventilation provides a constant flow of gas to ensure adequate tidal volume.

- **Time**
 - Time-controlled ventilation ensures that each breath is delivered at a set time interval.

Decelerating Flow

- **Flow**
 - Flow decreases gradually after each breath to prevent hyperventilation.

Constant Flow

- **Flow**
 - Flow remains constant throughout each breath to ensure adequate ventilation.

Dual (Control)

- **Pressure (P)**
 - PEEP, PSV, Spontaneous
 - PEEP: Pressure-Flow/Fixed Flow trigger, fixed time
 - PSV: Pressure Support
 - Spontaneous: No trigger, no time

- **Flow (F)**
 - Flow-Powered (FP): Flow deceleration, fixed time
 - Flow-Set (FS): Flow set, no time

Other Names

- **P, PS, Spontaneous**
- **P, FP, FS**
- **P, PS, Spontaneous**
- **P, FP, FS**

Notes

- **Ventilation is not a cure**
- **Adverse Effects**
 - High leak: may cause hypoxemia and hypercapnia.
 - Low leak: may cause hypercapnia and hypoventilation.
- **Respiratory Mechanics**
 - Minute Ventilation (MV) = VT x RR
 - Peak Flow = VT / TI
 - Tidal Volume (VT) = MV / RR
 - Inspiratory Flow (I) = VT / TI
 - Expiratory Flow (E) = VT / (VT + TI)
 - Inspiratory Time (TI) = VT / I
 - Expiratory Time (TE) = VT / E
 - Respiratory Rate (RR) = 60 / (TI + TE)
 - Residual Volume (RV) = VT x (RR / MV)
 - Inspiratory Reserve Volume (IRV) = VT x (RR / MV)
 - Inspiratory Time: inspiratory time divided by the total respiratory cycle time.
 - Expiratory Time: expiratory time divided by the total respiratory cycle time.

Pressure Support (PS)

- **Pressure**
 - Pressure-controlled ventilation prevents alveolar collapse and promotes normal lung function.

- **Flow**
 - Flow-controlled ventilation provides a constant flow of gas to ensure adequate tidal volume.

- **Time**
 - Time-controlled ventilation ensures that each breath is delivered at a set time interval.

Choosing a Ventilator Mode

- **Assisted Control (AC)**: Fixed minute ventilation is delivered if spontaneous breathing exceeds ventilator rate or SES.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Pressure Control (PC)**: Fixed tidal volume is delivered if spontaneous breathing exceeds ventilator rate or SES.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Volume Control (VC)**: Fixed tidal volume is delivered at a set respiratory rate.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.

- **Synchronized Intermittent Mandatory Ventilation (SIMV)**: A combination of AC and PC.
 - Pro: More effective than spontaneous breathing.
 - Cons: Poor compliance, difficulty in weaning.
Respiratory Care, Setup, & Monitoring
- Ensure all equipment is functional or readily available.
- Review patient’s medical history to understand risk factors for respiratory compromise.
- Ensure easy access to equipment, supplies, and personnel who can assist with ventilator setup.
- Use non-invasive ventilation if possible to avoid intubation.
- Monitor vital signs frequently.

Lung-Protective Ventilation (LPV)

When to Use LPV
- **ARDS**
- **Acute Respiratory Distress Syndrome (ARDS)**
- **Severe Hypoxemia**
- **Acute Respiratory Failure**
- **Pneumothorax**
- **Acute Kidney Injury**

Lung-Protective Ventilation (LPV) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5-15 cm H2O</td>
</tr>
<tr>
<td>I:E Ratio</td>
<td>1:1-1:2</td>
</tr>
<tr>
<td>Peak Press</td>
<td><40 cm H2O</td>
</tr>
<tr>
<td>Mean Press</td>
<td><28 cm H2O</td>
</tr>
<tr>
<td>Nasal CPAP</td>
<td>5-10 cm H2O</td>
</tr>
</tbody>
</table>

Additional LPV Reference Calculations

Predicted Patient Weight (BMI) (kg):

- Male: \(\frac{weight \times (height/100)}{71.8} \)
- Female: \(\frac{weight \times (height/100)}{71.8} - 10 \)

Actual Patient Weight (BMI) (kg):

- Male: \(\frac{weight \times (height/100)}{71.8} \)
- Female: \(\frac{weight \times (height/100)}{71.8} - 10 \)

Additional LPV Reference Calculations

- **P/F Ratio:**
 - \(\frac{P_{A}O_{2}}{F_{I}O_{2}} \)

Sydney Values Corresponding to P/F Ratio:

- **P/F Ratio:** 150-200
 - **Sydney Value:** 0.5
- **P/F Ratio:** 200-250
 - **Sydney Value:** 0.6
- **P/F Ratio:** 250-300
 - **Sydney Value:** 0.7
- **P/F Ratio:** 300-350
 - **Sydney Value:** 0.8
- **P/F Ratio:** 350-400
 - **Sydney Value:** 0.9
- **P/F Ratio:** >400
 - **Sydney Value:** 1.0

Discomfort, Pain, Anxiety, & Delirium

- **Pain:**
 - **Assessment:** self-report, pain scales, vital signs
 - **Management:** non-pharmacologic, pharmacologic
- **Pain Management:**
 - **Oral Analgesics:** NSAIDs, opioids
 - **Intravenous Analgesics:** opioids, ketamine
- **Medication Administration:**
 - **Opioids:** starting dose, titration strategy
 - **Non-opioids:** starting dose, titration strategy
 - **Adjuvant Analgesics:** acetaminophen, tricyclic antidepressants

Ventilator Setup (geri) to connecting patients

Ventilator Performance

- **Perfect Full Flow Check**
 - Check ETT position
 - Check O2 delivery
- **Monitor Settings & Alarms**
 - **Inspiration Time:** 0.2-0.4 sec
 - **Expiration Time:** 0.4-0.6 sec
 - **Flow Rate:** 15-50 l/min

Pneumothorax, Endotracheal Tube & Circuit Hygiene

- **Check cuff pressure and association (in) vs. (out) to ensure adequate cuff inflation, then deflate and inspect cuff and tube for damage, then re-inflate to 20-30 cm H2O
- **Check inflation of bag to ensure it remains inflated and intact.
- **Check ventilator circuit for any leaks, and inspect circuit for any damage in 24h.
- **Wipe down ventilator with approved disinfectant solution.

Respiratory:

- **Assess**, **Monitor**, **Manage**, **Minimize**
- **Continuous**
- **Non-invasive**
- **Invasive**

Respiratory Monitoring

- **Respiratory Rate**: 12-20 breaths/min
- **O2 Saturation**: \(\geq 92\% \)
- **Respiratory Sounds**: Clear
- **Skin Color**: Pink

Continuity Planning

- **Ensure manual (i.e. bag-valve-mask) ventilator device is operational and ready to use with a backup and FV/RT team nearby.

Ventilator Wearing & Exhution

- **SBT (Process and Consideration)**
 - **Patient Day:** Before intubation and FIO2 < 0.6, any patient may be considered for FIO2 < 0.6.
- **Ventilator Set:**
 - **Inspiration:** PEEP = 5-15 cm H2O
 - **Expiration Time (ET):** 0.4-0.6 sec

Weaning Strategies

- **Assess**
 - **O2 Sat:** Before intubation and FIO2 < 0.6, any patient may be considered for FIO2 < 0.6.
- **Ventilator:**
 - **Inspiration:** PEEP = 5-15 cm H2O
 - **Expiration Time (ET):** 0.4-0.6 sec

Extracorporeal Oxygenation

- **Current indications:**
 - **Pulmonary Hypertension**: \(\geq 50 \text{mmHg} \)
 - **Acute Respiratory Distress Syndrome (ARDS)**

Patient-Ventilator Dysynchrony

- **Preventing Dysynchrony:**
 - **Optimize patient position:** Prone positioning, changing body position, minimizing external distractions.
 - **Optimize ventilator settings:** PEEP, I:E ratio, respiratory rate.

General Considerations

- **Prevention of Ventilator-Associated Pneumonia (VAP):**
 - **Hand hygiene:** Before and after patient contact.
 - **PPE:** Use when appropriate.
 - **Antimicrobials:** Use per institutional guidelines.

Conclusion

- **Address any patient concerns and reinforce knowledge gained during educational sessions.

Imputed PaO2 Calculator

- **Imputed PaO2:**
 - **Calculation:** \(\frac{P_{A}O_{2}}{F_{I}O_{2}} \)

SBT (Process & Consideration)

- **Patient Day:** Before intubation and FIO2 < 0.6, any patient may be considered for FIO2 < 0.6.
- **Ventilator Set:**
 - **Inspiration:** PEEP = 5-15 cm H2O
 - **Expiration Time (ET):** 0.4-0.6 sec

Weaning Strategies

- **Assess**
 - **O2 Sat:** Before intubation and FIO2 < 0.6, any patient may be considered for FIO2 < 0.6.
- **Ventilator:**
 - **Inspiration:** PEEP = 5-15 cm H2O
 - **Expiration Time (ET):** 0.4-0.6 sec

Extracorporeal Oxygenation

- **Current indications:**
 - **Pulmonary Hypertension**: \(\geq 50 \text{mmHg} \)
 - **Acute Respiratory Distress Syndrome (ARDS)**

Patient-Ventilator Dysynchrony

- **Preventing Dysynchrony:**
 - **Optimize patient position:** Prone positioning, changing body position, minimizing external distractions.
 - **Optimize ventilator settings:** PEEP, I:E ratio, respiratory rate.

General Considerations

- **Prevention of Ventilator-Associated Pneumonia (VAP):**
 - **Hand hygiene:** Before and after patient contact.
 - **PPE:** Use when appropriate.
 - **Antimicrobials:** Use per institutional guidelines.

Conclusion

- **Address any patient concerns and reinforce knowledge gained during educational sessions.

Imputed PaO2 Calculator

- **Imputed PaO2:**
 - **Calculation:** \(\frac{P_{A}O_{2}}{F_{I}O_{2}} \)