Predicting Surge Requirements for Medical Gas Consumption

Robert L. Chatburn, MHHS, RRT-NPS, FAARC

Research Manager – Respiratory Institute Cleveland Clinic Professor – Department of Medicine Lerner College of Medicine of Case Western Reserve University

Disclosure

• I am a paid consultant for

- IngMar Medical
- Hillrom
- Vyaire Medical

Disclaimer

- I have no experience in the area of facilities engineering
- I do have 40+ years of experience as a medical scientist

Goal of this talk

 To improve the communication between Medical Gas Professionals and Healthcare Professionals to better prepare for emergency surges in oxygen consumption

Overview

- Gas consumption concerns during a surge
- Facilities design issues
 - Limitations on O_2 consumption due to facility design
 - Potential problems with design tolerances
- Crash course on medical consumption of oxygen
 - Medical terms
 - Device descriptions
- Crash course on statistics
- How to predict medical consumption
 - Misconceptions about data needed
 - Where to get the data
 - How to use the calculators
- Practical suggestions

Caveat

• The late management guru Peter Drucker considered hospitals to be

- "The most complex human organization ever devised "

- According to complex systems theory, chaos theory, graph theory and network theory
 - The behavior of complex systems is highly sensitive to changes in initial conditions
 - Complex systems are essentially unpredictable
- You better have a backup plan in case your predictions fail

COVID-19 Epidemic Concerns

- Increased usage of mechanical ventilators
 - Increased usage of current inventory
 - Invasive & non-invasive mechanical ventilators
 - Rapid increase in new ventilator purchases
- Increased usage of other oxygen delivery equipment
 - Conventional and high flow nasal cannulas
- The limiting factor may not be the number of ventilators but the medical gas supply to operate them

Facilities Design Issues

Facilities Design – Storage and Use

- Limitations on medical oxygen stored in liquid form
 - Maximum flow due to plumbing resistance
 - Maximum zone and total facility storage capacity
 - Reduced heat exchange due to icing on evaporation coils

Facilities Design – Medical Air

- Air is supplied by huge air compressors with dryers to remove water vapor
 - Failure of dryers will lead to water in plumbing that can damage ventilators

Medical Gas Professional Healthcare Organization

https://mgpho.org/

Facilities Design – Tolerance Limits

- No standard design procedure for medical gas sizing
 - Tolerance limits set by engineering experience
 - Clinical expectations may be misunderstood or not considered
- System design surge tolerances may not be adequate
 - Tolerances may be based on average normal oxygen usage
 - Surge oxygen use may be based on unexpected use of medical equipment (types and numbers)
- Tolerances must be based on clear communication between clinicians and engineers
 - Data from current COVID-19 surge should be used to improve prediction accuracy

Ventilator

- Automatic machine use to perform some portion of the work of breathing to assure gas exchange
- Ventilator-day
 - Metric for ventilator usage recorded in EMR
 - One ventilator used for 24 hrs = 1 vent day
 - One ventilator used for 2 days = 2 vent days
 - Two ventilators used for 1 day = 2 vent days

Invasive ventilation

Intubation with endotracheal tube or tracheostomy tube

Non-Invasive ventilation

- Use of mask or helmet

- By Application
 - General purpose ICU
 - Homecare/transport
 - Pediatric/neonatal
 - High frequency ventilators
 - Noninvasive ventilators

Dräger Evita XL

- By Application
 - General purpose
 - Homecare/transport
 - Pediatric/neonatal
 - High frequency ventilators
 - Noninvasive ventilators

Covidien PB 540

- By Application
 - General purpose
 - Homecare/transport
 - Pediatric/neonatal
 - High frequency ventilators
 - Noninvasive ventilators

Dräger Babylog VN500

- By Application
 - General purpose
 - Homecare/transport
 - Pediatric/neonatal
 - High frequency ventilators
 - Noninvasive ventilators

Sensormedics 3100

Bunnell Life Pulse

- By Application
 - General purpose
 - Homecare/transport
 - Pediatric/neonatal
 - High frequency ventilators
 - Noninvasive ventilators

Philips Respironics V60

Some Ventilators Use Blowers

Miniature turbine avoids use of medical air supply

Noninvasive

Invasive

Unexpected examples

Ventilation Oxygen Cough Suction Nebulization

Fitbit's ventilator gets emergency FDA approval

Huge variability among ventilators

Oxygen Only	Oxygen &	Med Air
Philips Respironics BiPAP V60 Max Flow 175 LPM Low 40, High 87	GE Carescape R860 • Max Flow 160 LPM • Low 35, High 94	
Respironics Esprit • Max Flow 300 LPM • Low 40, High 90	Carefusion Avea • Low 20, High 80	
Allied Healthcare AutoVent 3000 Flow listed between 16-48 LPM Low 40, High 60	Carefusion LTV1200 • Low 40, High 80	
Allied Healthcare EPV200 • Spec says an oxygen D cylinder will last 65 minutes • Low 40, High 87	Tecme Advance • Low 41, High 87	
Respironics Vision BiPAP Max Flow 120 LPM Low 50, High 100	Drager Evita XL • Max flow 120 LPM • Low 39, High 87	
Trilogy Ventilator Max Flow 200 LPM Low 40, High 87	Maquet Servo I • Low 29, High 94	
Newport HT70 Transport Ventilator • Max Flow 100 LPM • Low 35, High 90	PB 840 • Flow to 200 LPM • Low 35, High 100	

Medical Gas Professional Healthcare Organization

- Need to consult with clinical representatives to account for ventilator models
 - Consider constant bias flow (0 30 L/min)
 - Consider huge leaks during noninvasive ventilation

- Minute Ventilation (L/min)
 - Flow of fresh gas through the lungs to achieve adequate elimination of carbon dioxide
 - Minute ventilation = tidal volume x respiratory rate
- Tidal Volume (mL)

- The volume of gas inhaled/exhaled during ventilation

- Respiratory Rate (breaths/min)
 - Number of breaths per minute during ventilation
- Inspiratory flow (L/min)
 - Peak flow into the lungs during inspiration

Simple Oxygen Mask (5-10 L/min)

Non-Rebreathing Mask (10 - 15 L/min)

Entrainment (Venturi) Oxygen Mask (4-15 L/min)

Entrainment Large Volume Nebulizer (15 L/min)

Standard Nasal Cannula (1-6 L/min)

High Flow Nasal Cannula (1-40 L/min)

Small Volume Nebulizer (6-8 L/min)

Note: there could be hundreds of treatments per day at perhaps 10 minutes/treatment

> Oxygen Hood (10-15 L/min)

Oxygen Metering Devices

Oxygen Flow Meter (0-15 L/min)

Oxygen Blender (2 - 120 L/min)

Crash Course in **Statistics**

Turning Date Into Information

Predicting Oxygen Consumption

The Basic Problem:

- What data do we need?
 - Peak flow of oxygen to a hospital zone
 - Total flow from ventilators in simultaneous use
 - Total flow from oxygen delivery devices in simultaneous use
 - Predictive model for turning random usage into probable peak usage
- Where will we get it?
 - Hospital Electronic Medical Record
 - System for associating billing codes to O₂ devices
- How do we analyze it?
 - Oxygen usage calculator

Some Misconceptions

- What is max inspiratory flow rate?
 - This is irrelevant, what you want is minute ventilation
- What is average breaths per minute
 - Incomplete data, what you need is:
 - Minute Ventilation = Breath Rate x Tidal Volume
- What is % O_2 on max flow settings
 - Inadequate data
 - Better to use O₂ consumption calculator
- The average respiratory therapist cannot supply the information you need
 - What you need is a task force and EMR data mining

Some Good Advice

How many ventilators can I install within my facility?

- Beacon Medaes MedGas Insights Issue 8
- Kaiser Permanente Document
- PB 840 Ventilator Calculator
- Run actual flow tests in zone(s) where additional ventilators are expected to be put into use

Medical Gas Professional Healthcare Organization

- Beacon Medaes
 - Point estimates not applicable for zone usage

Kaiser Permanente

 Good distinction between invasive/noninvasive vents vs high flow nasal cannula

• PB 840 calculator

 Ventilators differ radically in oxygen consumption for same settings: need to consult operator's manuals

Run actual flow tests

 Perhaps the best advice if you can get enough vents for the simulation and know what settings to use

A Procedure for Risk Prediction

Procedure Overview

- **1.** Create list of ICU with number of beds in each unit
- 2. Obtain medical gas piping data from facilities engineering
- **3.** Understand location of choke points

Medical Air – Hospital Mains and Risers

Pipe Size	Pressure Drop/100 Ft (PSIG)	Capacity (LPM)
1 1⁄4"	1.02	2,700
1 1⁄2"	1.02	4,300
2"	0.64	7,000
2 1/2"	0.60	12,000
3"	0.53	18,000

Calculator - Medical Gas Flow Limitation

Riser		South		Mi	ddle		North	
Unit	G60	G50	G51	G61	G52	G62	G53	G54
Number of beds per unit	8	10	11	17	10	18	10	10
Minute Ventilation (LPM)/Ven	tilator	10	*	FiOz	0.45	<u>*</u>	Air (LPI 7.0	O z (LP) 3.0
Assumed Air flow per bed (L/min)	10	* *	d Oxyg	n flow j	per bed	(L/min)	60	*
Medical Air								
Target Pressure (PSI) at Zone Valve Box Inlet	50	50	50	50	50	50	50	50
Riser Pipe Size (inches)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Riser served from	South	South	South	Middle	Middle	North	North	North
Maximum Capacitu in Riser (LPM)	2700	2700	2700	2700	2700	2700	2700	2700
Maximum Number of Beds per Riser	270	270	270	270	270	270	270	270
Zone Valve Pine Size (inches)	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Maximum Canacitu through Zone Valve (LPM - 106 PSI pressure drop)	700	700	700	700	700	700	700	700
Maximum Number of Reds per Zone Value from Riser	70	70	70	70	70	70	70	70
Outlet Pine Size (inches)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum Concitu Through Outlat Ding (LDM - 106 DSI processed from)	260	260	260	260	260	260	260	260
Maximum Capetty Introdyn Gater Pipe (PIMP 100 Pist pressure Grop)	200	200	200	200	200	200	200	200
matimum number of Deds per Outlet Pipe from 2006 valve	20	20	20	20	20	20	20	20
Number of beds in Unit	8	10	11	17	10	18	10	10
Percentage of Beds supported at 49 PSI	3252	260%	2362	1532	260%	1442	2603	260%
Number of beds in Unit	8	10	11	17	10	18	10	10
Total flow at assumed flow/bed	480	600	660	1020	600	1080	600	600
Outlet pressure (PSIG) at Zone Valve	49	49	49	48	49	48	49	49
Outlet pressure (PSIG) at bed	47	47	46	44	47	44	47	47
1. f. 1. 0								
Target Pressure (PSI) at Zone Valve Box Inlet	50	50	50	50	50	50	50	50
Direct Direc Size (inches)	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95
Dicer cerued from	South	South	South	Middle	Middle	North	North	Morth
Maximum Canacitu in Dicer (I PM)	2600	2600	2600	2600	2600	2600	2600	2600
Maximum Number of Bade per Dicer	43	43	43	43	43	43	43	43
Zona Valua Dina Sina (inchae)	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Maximum Capacity through Zone Value (LPM - 106 PSI processe drop)	660	660	660	660	660	660	660	660
Maximum Capacity (modgli 2016 Yarre (2214 Yaloo Forpressure arop)	44	44			44	44	44	
Outlat Dirac Sina (inskas)								
Maximum Consitu Theoreth Outlet Ding (LDM - 106 DSI processes door)	260	260	260	260	260	260	260	260
Maximum Capetry I nrough Outlet Pipe (LPW - 1.00 Pai pressure drop)	200	200	200	200	200	200	200	200
maximum number or deas per Outlet Pipe from Zone Valve	•	- * -	- * -		- * -		- * -	- * -
Number of beds in Unit	8	10	11	17	10	18	10	10
Percentage of Beds supported at 49 PSI	503	402	362	243	402	222	402	402
Number of beds in Unit	8	10	11	17	10	18	10	10
Total flow at assumed flow/bed	480	600	660	1020	600	1080	600	600
Outlet pressure (PSIG) at Zone Valve	49	49	49	48	49	48	49	49
Ontiat process (DSIC) at had	47	47	46		47		47	47

Air Biser	South	Middle	North
Number of beds in ICUs served by each Riser	23	27	38
Total Capacity of the Riser for Med Air	2700	2700	2700
Capacity of Beds that can be served per Med Air Riser at	270	270	270
Percentage of Beds that can be served per Med Air Riser :	931 2	10002	7113
Oxygen Riser			
Total Capacity of the Riser for Oxygen	2600	2600	2600
Capacity of Beds that can be served per Oxygen Riser at a	43	43	43
Percentage of Beds that can be served per Oxygen Riser a	1482	1592	1132

https://1drv.ms/x/s!AuFak BJODC3DgeFo4JcevHa Mclp5aw?e=X4alo0

Procedure Overview

4. Identify choke points (gas flow limitations calculator)

- a. Enter riser diameter
- b. Enter zone valve pipe diameter
- C. Enter outlet pipe diameter
- d. Calculate
 - % beds supported
 - Outlet pressure at zone valve
 - Outlet pressure at bed site

Step 4a – Calculate Max Riser Capacity

Worst case scenario All HFNC @ 60 LPM	Riser Unit Number of beds per unit	G60 8	South G50 10	G51 11
	Assumed flow per bed (L/min)	60	▲ ▼	
Med Gas				
Pressure (Ibs) at Zone Valve Box		50	50	50
Riser Pipe Size (inches)		1.25	1.25	1.25
Riser served from		South	South	South
Maximum Capacity in Riser (LPM)		2700	2700	2700

Step 4b – Calculate Zone Valve Capacity

Worst case scenario All HFNC @ 60 LPM

Riser	South			
Unit	G60	G51		
Number of beds per unit	8	10	11	

60

Assumed flow per bed (L/min)

•

Medical Air			
Target Pressure (PSI) at Zone Valve Box Inlet	50	50	50
Riser Pipe Size (inches)	1.25	1.25	1.25
Riser served from	South	South	South
Maximum Capacity in Riser (LPM)	2700	2700	2700
Maximum Number of Beds per Riser	270	270	270
Zone Valve Pipe Size (inches)	0.75	0.75	0.75
Maximum Capacity through Zone Valve (LPM - 1.06 PSI pressure drop)	700	700	700
Maximum Number of Beds per Zone Valve from Riser	70	70	70
Outlet Pipe Size (inches)	0.5	0.5	0.5
Maximum Capcity Through Outlet Pipe (LPM - 1.06 PSI pressure drop)	260	260	260
Maximum Number of Beds per Outlet Pipe from Zone Valve	26	26	26

Step 4c – Device Capacity

Calculator – Medical Gas Consumption

Note: Some ventilators have blowers and do not consume air from the wall outlet

Advantation BTPS = body temperature and pressure saturated with water vapor

STPD = standard temperature and pressure dry

conversion factor

0.21)

Minute Ventilation (STPD) = Minute Ventilation (BTPS) » conversion fact 🔤 🖉

DOV = duration of ventilation per patient L (liter) = Dm³(cubic decimeter)

Medical Gas Consumption Calculator 43.28.28 Created by Peef, Reberl L. Challere, HHHS, RRT-HPS, FAARC 2020

BASIC ASSUMPTIONS (per ventilator)	units	High	Median	Low	
Barometric Pressure	mmHq	760]		
Atmospheric Temperature	·c [27			_
Minute Ventilation	Liminivent; BTPS	12.0	7.8	5.0	
Minute Ventilation	Liminivent; STPD	9.9	6.5	4.1	
FiOz		1.0	0.60	0.4	
Oxygen Flow	Liminivent; STPD	9.9	3.2	1.0	100 C
Oxygen Flow	Librivent; STPD	595	192	60	O_2 flow = $\frac{\text{total How} \times (\text{PIO}_2)}{0.70}$
Oxygen Flow	Lfdfvont; STPD	14,276	4,605	1,431	- 0.79
Air Flow	Liminivent; STPD	0.0	3.3	3.1	
Air Flow	Librivent; STPD	0	197	188	airflow = total flow - O2 flow
Air Flow	L/d/vent; STPD	0	4,723	4,518	1
					1
CRITICAL ASSUMPTIONS	unitr	High	Median	Low	
Daily Yentilator Census	vontr	800	500	100	
Duration of Ventilation	days	14	12	10	
Total vent-days	vont-days	11,200	6,000	1,000	
Capacity of Oxygen H-Tanks	Litank	7,080			
Capacity of Air H-Tanks	Litank	7,080	1		
	-		•		
RESULTS for PIPING SYSTEMS (STPD)	unitr	High	Median	Low	
Oxygen Consumption Rate/min	cubicfoot	280	56	4	
Oxygen Consumption Rate/hr	cubicfoot	16,806	3,388	211	
Oxygen Consumption Rate/day	cubicfoot	403,335	81,305	5,052	
	-				
					1
Air Consumption Rate/min	cubicfoot	0	58	11	
Air Consumption Bate/min Air Consumption Bate/hour	cubic foot cubic foot	0	58 3,475	11 665	

🖸 calcularization (L) 🛛 🖨 calcularia

RESULTS for TANK SYSTEMS (STPD) unite	High	Median	Low
Required Oxygen H-Tanks per Day tanks	57	11	1
Required Oxygen H-Tanks per Population Duration of Ventilation tanks	798	138	7
Required Air H-Tanks per Day tanks	0	12	2
Required Air H-Tanks per Population Duration of Ventilation tanks	Ö	141	23

https://1drv.ms/x/s!AuFakBJODC3DgeFm6t2Pc4mxBHcg-g?e=wCysro

Oxygen Budget

- 5. Create oxygen use budget (medical gas consumption calculator)
 - **a.** Enter estimates for FiO_2 and ventilator census
 - Can also be used for HFNC instead
 - b. Enter average duration of ventilation
 - C. Enter capacity of compressed oxygen tanks
 - d. Calculate
 - Oxygen consumption
 - Air consumption
 - Required compressed gas tanks

Step 5a – Recalculate Oxygen Budget

BASIC ASSUMPTIONS (per ventilator) units	High	Median	Low
Barometric Pressure mmHg	760		
Atmospheric Temperature °C	27		
Minute Ventilation L/min/vent; BTPS	12.0	7.8	5.0
Minute Ventilation L/min/vent; STPD	9.9	6.5	4.1
FiO ₂	1.0	0.60	0.4
Oxygen Flow L/min/vent; STPD	9.9	3.2	1.0
Oxygen Flow L/hr/vent; STPD	595	192	60
Oxygen Flow L/d/vent; STPD	14,276	4,605	1,431
Air Flow L/min/vent; STPD	0.0	3.3	3.1
Air Flow L/hr/vent; STPD	0	197	188
Air Flow L/d/vent; STPD	0	4,723	4,518

CRITICAL ASSUMPTIONS units	High	Median	Low
Daily Ventilator Census vents	800	500	100
Duration of Ventilation days	14	12	10
Total vent-days vent-days	11,200	6,000	1,000
Capacity of Oxygen H-Tanks L/tank	7,080		
Capacity of Air H-Tanks L/tank	7,080		

Step 5b – Recalculate Oxygen Budget

RESULTS for PIPING SYSTEMS (STPD) units	High	Median	Low
Oxygen Consumption Rate/min cubic feet	280	56	4
Oxygen Consumption Rate/hr cubic feet	16,806	3,388	211
Oxygen Consumption Rate/day cubic feet	403,335	81,305	5,052
Air Consumption Rate/min cubic feet	0	58	11
Air Consumption Rate/hour cubic feet	0	3,475	665
Air Consumption Rate/day cubic feet	0	83,390	15,955

🔿 cubic decimeters (L) 🛛 🔞 cubic feet

RESULTS for TANK SYSTEMS (STPD) units	High	Median	Low
Required Oxygen H-Tanks per Day tanks	57	11	1
H-Tanks per Population Duration of Ventilation tanks	798	138	7
Required Air H-Tanks per Day tanks	0	12	2
H-Tanks per Population Duration of Ventilation tanks	0	141	23

Alternative Calculator

https://opencriticalcare.org/oxygen-supply-demand-calculator/

O: SUPPLY & DEMAND SaO: to PaO: CYLINDER DUP	RATION	English -
Step 1. Select Oxygen Source (not sure?)	Step 2. Enter Total Supply Enter the maximum volume of oxygen your generator can produce	Consumption per Day (Liters)
Select facility's most common source of oxygen Oxygen Plant (PSA)	0 cubic meters 👻 per hour 👻	0
Select manufacturer and model	Enter the average number of hours per day the generator can safely and reliably run 12 hours/day	Tanks per Day
	Cylinders vs. Oxygen Pipes	0
Step 3. Enter Patient Need		Total Supply per 24h period (Liters)
ESTIMATE FOR ME	I WILL ENTER NUMBER OF PATIENTS & FLOW	0
Modeled Ward Scenario		Supply will last hours days
Total # inpatients requiring oxygen		0
# Patients Delivery Device	More Severe	
28 58% / Nasal Cannula	3 / 120.960	
3 6% ≠ Facemask	8 / 34,560	
3 8% / Nonrebreather	15 64,800	
7 14% / Ventilator	18 / 181,440	
8 18% / High Flow Nasal Cannula 100%	40 / 460,800	
1 2% / CPAP or NIPPV	20 / 28,800	

Practical Suggestions

- **1.** Consider simulation testing
 - Place running ventilators with test lungs in each zone that might be used for critical care during surge
- 2. Turn off oxygen to manual resuscitators until used
 - Automatic shut-off devices are available
- **3.** Use minimal FiO_2 for adequate oxygenation
- 4. Reduce use of high flow nasal cannula for oxygen delivery
- 5. Find a way to monitor flow through zone valves
 - Is it possible to use thermal probes across valves to represent flow?

Additional Resources

Guidance Document

Additional Ventilators May Pose a Risk to Hospital Gas Systems

https://www.aarc.org/additional-ventilators-may-poserisk-to-hospital-gas-systems/

Medical Gas Professional Healthcare Organization

Leading through education, we save lives

Impact of COVID-19 on Medical Gase Sylessure build vaporizer should

Bulk Oxygen Concerns: Watch for icing in unusual locations the bedding the pressure build vaporizer should be done during the daily start inspection. If the ice on the Pressure Building coil has grown to the point where it is touching the ground, tank shell or any other component it needs to be deiced.

https://mgpho.org/

Issue 8, April 2020

Covid; Sizing Medical Gases

Sizing Medical Gases for Covid 19

https://www.ashe.org/system/files/media/file/2020/04 /MedGasSizing-updated.pdf Mational Facilities Services Facilities Strategy Planning & Design

Medical Air and Oxygen Capacity

Medical Air and Oxygen Capacity

April 5, 2020

Edward (Sandy) Renshaw, P.E. Principal Mechanical Engineer NFS- FSPD

Phone: 714-329-5402 E-mail: <u>Edward.X.Renshaw@kp.org</u>

https://www.dropbox.com/s/nbh6sitchxzbg36/KP%20 White%20Paper%20Medical%20Air%20and%20Oxy gen%20Capacity%20v3.pdf?dI=0

The Joint Commission

Maximizing Medical Gas Flow Capacity

SURGING VENTILATOR USAGE DURING THE COVID-19 PANDEMIC MEANS HEALTH CARE FACILITIES NEED TO ENSURE THEIR MEDICAL GAS SUPPLY SYSTEMS CAN DELIVER LARGER AMOUNTS OF OXYGEN AND AIR

https://www.jcrinc.com/-/media/jcr/jcrdocuments/products/consulting/covid-recoveryservices/max-medical-gas-ec-news.pdf

CGA Industry Toolkit for COVID-19 Response

(Last updated: June 26, 2020)

https://www.cganet.com/resources/cga-covid-19toolkit/

K Back

Calculating oxygen consumption for Hamilton Medical ventilators

https://www.hamilton-medical.com/en_US/E-Learning-and-Education/Knowledge-Base/Knowledge-Base-Detail~2020-07-07~Calculating-oxygen-consumption-for-Hamilton-Medical-ventilators~c1b09f7f-3224-45b9-aa12-4cfd37e6d5ff~.html

This Lecture

Predicting Surge Requirements for Medical Gas Consumption

Robert L. Chatburn, MHHS, RRT-NPS, FAARC Research Manager – Respiratory Institute Cleveland Clinic Professor – Department of Medicine Lemer College of Medicine of Case Western Reserve University

https://1drv.ms/p/s!AuFakBJODC3DgqYHpES2jibCG aioTA?e=PCNHHz

Take-Home Messages

- Medical oxygen and air supply systems may not be able to handle the increased usage during emergency surges (eg COVID-19)
- Accurate prediction of medical gas use during extreme surges requires a combination of both clinical and engineering information
 - Simple questions to stakeholders will not suffice
 - Create a task force with content experts
 - Facilities engineers
 - Respiratory therapists
 - Statistician

Take-Home Messages

- Calculators are available to make accurate estimates useful to engineers based on relevant ventilator usage data from clinical experience
- Other practical actions should be taken to assure adequate oxygen supplies
- Predicting the behavior of complex systems is extremely difficult
 - Simplified models are tempting but may be misleading
 - This subject requires more study to improve our ability to cope with future surges