Respiratory Care Reference Pocket Guide

Positive End Expiratory Pressure (PEEP) (cmH₂O)
- Pressure: 0-5
- Setting: titrated based on ventilator mechanics and respiratory patient response
- Objective: reduce work of breathing and improve oxygenation.

Pressure Regulated Volume Control (PRVC)
- Pressure regulated volume control (PRVC)
- Pressure: variable
- Flow: variable
- Mode: pressure regulated volume control
- Summary: used to deliver a set volume of gas at a consistent pressure

Inspiratory Effort (I)
- **Peak Flow**: Highest flow achieved by expiratory effort during inspiration
- **I:E Ratio**: Peak flow divided by inspiratory flow
- **I:E Ratio of 2:1 is best for most patients**
- **Normal TI (~1-1.5s)**
- **TI too long**: Risk of barotrauma

Pressure Support (PS)
- **Pressure Support**: Set pressure
- **Rise time**: Pressure rise time
- **Duration of breath**: Time at set pressure
- **Pinsp**: Set inspiratory pressure

Inspiratory Time (T)
- **Normal TI (~1-1.5s)**
- **TI too long**: Risk of barotrauma

Breathing Rate (R, bpm)
- **Normal RR**: 15-20
- **RR too high**: May lead to hyperventilation

Volume Control (VC, mL)
- **Volume of each breath**: Set volume
- **Rise time**: Pressure rise time
- **Duration of breath**: Time at set pressure

Respiratory Mechanics

Calculating Compliance (C): (cmH₂O/mL)
- **C = ΔV / ΔP = Tidal volume of breath / Pdr**
- **Target >5 mL/cmH₂O**

Calculating Resistance (R): (cmH₂O/L)
- **R = ΔP / ΔV = inspiratory pressure / tidal volume**
- **Target <3 cmH₂O/L**

Calculating Peak Flow (L/min)
- **MV = V̇/T (breaths per minute)**
- **Normal MV**: 7-10 L/min

Other Names

AC-PC: Assist Control Volume Control
- **Volume Control (VC)**: (mL)
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

AC-PC: Non-ventilator Care
- **Volume Control (VC)**: (mL)
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

PSV: Pressure Support
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

BTPS: Body Temperature, Pressure, and Saturation
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

Other Names & Function

PSV: Pressure Support
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

BTPS: Body Temperature, Pressure, and Saturation
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

PS: Pressure Support
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

Oxygen Sources & Delivery Devices

Nasal Cannulae (HC)
- **High Flow Portion**: Fresh air with <15% N₂
- **Flow settings**: (max flow depends on cannula size; up to 60 LPM for adults and 100% FiO₂)
- **Capacity**: Able to achieve high FiO₂
- **Pros**: Requires humidification if >4LPM (risk of epistaxis); no work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Non-Rebreathing valves (HC)
- **High Flow Portion**: >40 LPM
- **Low Flow Portion**: <4LPM
- **Pros**: Ability to achieve high FiO₂
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Nasal High Flow Cannulae (HC)
- **High Flow Portion**: >40 LPM
- **Low Flow Portion**: <4LPM
- **Pros**: Low work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Continuous Positive Airway Pressure (CPAP)
- **Low flow (nose)**: 2-4 LPM
- **Low flow (mouth)**: 2-4 LPM
- **Pros**: Low work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Oxygen Sources & Delivery Devices

Nasal Cannulae (HC)
- **High Flow Portion**: Fresh air with <15% N₂
- **Flow settings**: (max flow depends on cannula size; up to 60 LPM for adults and 100% FiO₂)
- **Capacity**: Able to achieve high FiO₂
- **Pros**: Requires humidification if >4LPM (risk of epistaxis); no work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Non-Rebreathing valves (HC)
- **High Flow Portion**: >40 LPM
- **Low Flow Portion**: <4LPM
- **Pros**: Ability to achieve high FiO₂
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Nasal High Flow Cannulae (HC)
- **High Flow Portion**: >40 LPM
- **Low Flow Portion**: <4LPM
- **Pros**: Low work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Continuous Positive Airway Pressure (CPAP)
- **Low flow (nose)**: 2-4 LPM
- **Low flow (mouth)**: 2-4 LPM
- **Pros**: Low work of breathing
- **Cons**: Requires high pressure/flow source; ~ >90% FiO₂

Choosing a Ventilator Mode

- **Assist Control (AC)**: Allows end user to titrate to achieve a non-rebreathing baseline tidal volume or O₂ demand.
- **Pressure Support (PS)**: Allows the ventilator to deliver a portion of each breath at a set pressure, allowing for a reduction in the patient’s work of breathing.
- **Controlled Volume (CV)**: Delivers a set volume of gas at a consistent pressure.
- **Volume Control (VC)**: Delivers a set volume of gas at a set pressure.
- **Continuous Positive Airway Pressure (CPAP)**: Delivers a continuous PIP of gas without the need for a trigger or breath effort.
- **Synchronized Intermittent Mandatory Ventilation (SIMV)**: Delivers a set number of breaths at a set pressure or volume, with the option to add spontaneous breaths.
- **Synchronized Intermittentmandatory Ventilation + Pressure Support (SIMV+PS)**: Combines the features of SIMV and PS, allowing for a set number of breaths at a set pressure or volume, with the option to add spontaneous breaths.
- **Spontaneous (Spont)**: Allows the patient to control their own breathing with the support of assist or backup breaths.
- **Pressure Support with Backup (PSB)**: Allows the ventilator to deliver a set volume of gas at a set pressure, with the option to add spontaneous breaths.

Respiratory Pressure Support (MPR)
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

Designated patient effort and flow terminated (DPC)
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

Respiratory Failure and Supportive Ventilation (RFSV)
- **Controlled Variable**: PIP
- **Controlled Variables**: PIP
- **Initial Settings**: PIP 10, PEEP 5

Respiratory Mechanics

Volume of each breath: Set volume
- **Rise time**: Pressure rise time
- **Duration of breath**: Time at set pressure
- **Pinsp**: Set inspiratory pressure

Other Names: AC-PC, Assist Control Volume Control; CV - CV (controlled mandatory ventilation); SIMV - SIMV (controlled mandatory ventilation); SIMV+PS - SIMV+PS (controlled mandatory ventilation + pressure support); S/CMV - SP/CMV (synchronized mandatory ventilation + pressure support); B/CMV - B/CMV (burst synchronized mandatory ventilation + pressure support); SIMV+PS/CMV - SIMV+PS/CMV (synchronized mandatory ventilation + pressure support + pressure support)
Lung Protective Ventilation (LPV)

Respiratory Care, Setup, & Monitoring

- **Setup Prior to Connecting Patients**
 - Ensure all equipment is properly functioning and available.
 - Practice time on ventilator should be set for all patients.
 - Ventilator alarms should be set in accordance with institutional policy.
 - Ensure that the ventilator is properly connected to the power source.
 - Check for proper connection of the ventilator to the patient's devices.

Ventilator Performance

- **Check Adequate Sedation, then Consider Paralysis**
 - Paralysis may be considered in patients who are difficult to ventilate.
 - Paralysis may be used to prevent spontaneous ventilation.
 - Paralysis may be used to prevent agitation.

Pulmonary, Endotracheal Tube & Circuit Hygiene

- **Check cuff pressure and auscultate q12h to avoid over-inflation/leak**
 - Cuff pressure should be maintained at 20-30 cmH2O.
 - Auscultation should be performed to ensure no air leaks.
 - If over-inflation is suspected, deflate the cuff and re-inflate to a safe pressure.

General Approach

- **Stop if RASS ≥ 2**
 - RASS ≥ 2 indicates that the patient is responsive to verbal commands.
 - RASS ≥ 2 may indicate that the patient is too agitated to be ventilated safely.
 - RASS ≥ 2 may indicate that the patient is too alert to be ventilated safely.

Additional LPV Reference Calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>V̇E (mL/min)</td>
<td>V̇E = 100 × (Tidal Volume × respiratory rate)</td>
</tr>
<tr>
<td>V̇CO₂ (mL/min)</td>
<td>V̇CO₂ = 100 × (Tidal Volume × respiratory rate) × (fraction of inspired oxygen - 0.5)</td>
</tr>
<tr>
<td>Pplat (cmH₂O)</td>
<td>Pplat = (PEEP + PIP) - (respiratory system compliance × respiratory rate × tidal volume)</td>
</tr>
<tr>
<td>Pd (cmH₂O)</td>
<td>Pd = (Pplat - PEEP) / (respiratory system compliance × respiratory rate × tidal volume)</td>
</tr>
</tbody>
</table>

Lung Protective Ventilation (LPV)

- **Goal O₂ Saturation**
 - O₂ saturation should be maintained at 92-95%.
 - O₂ saturation should be maintained at 90-95% in patients with advanced disease.

Adjunctive Therapies for ARDS Hypoxemia

- **High recommends paralytics**
 - Paralytics should be used in patients who are difficult to ventilate.
 - Paralytics should be used in patients who are agitated.

High Pressure

- **High pressure**
 - High pressure may be observed with excessive spontaneous ventilation.
 - High pressure may be observed with upper airway obstruction.

High V̇E

- **High V̇E**
 - High V̇E may be observed with increased metabolic demand.
 - High V̇E may be observed with increased dead space ventilation.

High ṖaCO₂

- **High ṖaCO₂**
 - High ṖaCO₂ may be observed with excessive ventilation.
 - High ṖaCO₂ may be observed with hypoventilation.

High ṖaCO₂

- **High ṖaCO₂**
 - High ṖaCO₂ may be observed with hypoventilation.
 - High ṖaCO₂ may be observed with excessive ventilation.

Low Compliance

- **Low Compliance**
 - Low Compliance may be observed with increased airway resistance.
 - Low Compliance may be observed with increased pleural pressure.

Low Resistance

- **Low Resistance**
 - Low Resistance may be observed with decreased airway resistance.
 - Low Resistance may be observed with decreased pleural pressure.

Dysynchrony

- **Dysynchrony**
 - Dysynchrony may be observed with increased patient-ventilator asynchrony.
 - Dysynchrony may be observed with decreased patient-ventilator synchrony.

Patient-Ventilator Dysfunction

- **Patient-Ventilator Dysfunction**
 - Patient-Ventilator Dysfunction may be observed with excessive spontaneous ventilation.
 - Patient-Ventilator Dysfunction may be observed with hypoventilation.

General Considerations

- **General Considerations**
 - General Considerations may be observed with excessive ventilation.
 - General Considerations may be observed with hypoventilation.

V̇E

- **V̇E**
 - V̇E may be observed with excessive ventilation.
 - V̇E may be observed with hypoventilation.

V̇CO₂

- **V̇CO₂**
 - V̇CO₂ may be observed with excessive ventilation.
 - V̇CO₂ may be observed with hypoventilation.

ṖaCO₂

- **ṖaCO₂**
 - ṖaCO₂ may be observed with excessive ventilation.
 - ṖaCO₂ may be observed with hypoventilation.

ṖaO₂

- **ṖaO₂**
 - ṖaO₂ may be observed with excessive ventilation.
 - ṖaO₂ may be observed with hypoventilation.

Correlation Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>V̇E (mL/min)</td>
<td>V̇E = 100 × (Tidal Volume × respiratory rate)</td>
</tr>
<tr>
<td>V̇CO₂ (mL/min)</td>
<td>V̇CO₂ = 100 × (Tidal Volume × respiratory rate) × (fraction of inspired oxygen - 0.5)</td>
</tr>
<tr>
<td>Pplat (cmH₂O)</td>
<td>Pplat = (PEEP + PIP) - (respiratory system compliance × respiratory rate × tidal volume)</td>
</tr>
<tr>
<td>Pd (cmH₂O)</td>
<td>Pd = (Pplat - PEEP) / (respiratory system compliance × respiratory rate × tidal volume)</td>
</tr>
</tbody>
</table>

SBT Solution Choices

- **SBT Solution Choices**
 - SBT Solution Choices may be used to assess patient readiness for extubation.
 - SBT Solution Choices may be used to assess patient readiness for extubation.

Weaning Strategies

- **Weaning Strategies**
 - Weaning Strategies may be used to assess patient readiness for extubation.
 - Weaning Strategies may be used to assess patient readiness for extubation.

Extraction of V̇CO₂ vs V̇E

- **Extraction of V̇CO₂ vs V̇E**
 - Extraction of V̇CO₂ vs V̇E may be used to assess patient readiness for extubation.
 - Extraction of V̇CO₂ vs V̇E may be used to assess patient readiness for extubation.

Respiratory System Compliance

- **Respiratory System Compliance**
 - Respiratory System Compliance may be used to assess patient readiness for extubation.
 - Respiratory System Compliance may be used to assess patient readiness for extubation.

Additional Information

- **Additional Information**
 - Additional Information may be used to assess patient readiness for extubation.
 - Additional Information may be used to assess patient readiness for extubation.

Acknowledgments

- **Acknowledgments**
 - Acknowledgments may be used to assess patient readiness for extubation.
 - Acknowledgments may be used to assess patient readiness for extubation.